【NLP】GRU理解(Pytorch实现)

【参考:YJango的循环神经网络——实现LSTM - 知乎】 强烈建议阅读
【NLP】GRU理解(Pytorch实现)_第1张图片

【NLP】GRU理解(Pytorch实现)_第2张图片

手动实现

  • 重置门 r_t
  • 更新门 z_t
  • 候选隐藏状态 n_t
  • h_t 增量更新得到当前时刻最新隐含状态
    【NLP】GRU理解(Pytorch实现)_第3张图片
    is the Hadamard product.(点乘) 不是矩阵相乘

矩阵元素对应位置相乘
【NLP】GRU理解(Pytorch实现)_第4张图片

【参考:31 - GRU原理与源码逐行实现_取个名字真难呐的博客-CSDN博客】
【参考:31、PyTorch GRU的原理及其手写复现_哔哩哔哩_bilibili】

单层单向

import torch
from torch import nn

torch.manual_seed(0)  # 设置随机种子,随机函数生成的结果会相同

batch_size = 2  # 批次大小
seq_len = 3  # 输入序列长度
input_size = 4  # 输入数据特征大小
hidden_size = 5  # 隐藏层特征大小
num_layers = 1  # 层数

# random init the input
input_one = torch.randn(batch_size, seq_len, input_size)  # bs,seq_len,input_size 随机初始化一个特征序列

# random init the init hidden state
h0 = torch.zeros(batch_size, hidden_size)  # 初始隐含状态h_0 (bs,hidden_size) pytorch默认初始化全0
# 本来应该是(1,batch_size,hidden_size) 这里为了简便传递参数和下面的计算 因为很多时候传递的参数都是二维


# define the RNN layers
gru_layer = nn.GRU(input_size=input_size,
                   hidden_size=hidden_size,
                   num_layers=num_layers,
                   batch_first=True)

output_api, h_n_api = gru_layer(input_one, h0.unsqueeze(0))
# h_0 对于输入的是批次数据时维度为 (D∗num_layers,bs,hidden_size) 看官方参数
# h_prev.unsqueeze(0) h_prev:(bs,hidden_size)->(1,bs,hidden_size) 这里D为1,num_layers也是1

print(f"output.shape={output_api.shape}")
print(f"h_n.shape={h_n_api.shape}")

print(f"output={output_api}")
print(f"h_n={h_n_api}")

# 获取模型的参数
for k, v in gru_layer.named_parameters():
    print(k, v.shape)
weight_ih_l0 torch.Size([15, 4])
weight_hh_l0 torch.Size([15, 5])
bias_ih_l0 torch.Size([15])
bias_hh_l0 torch.Size([15])
"""
weight_ih_l0 是 W_ir,W_iz,W_in三个拼接起来的 (3*5,4)
weight_hh_l0,bias_ih_l0,bias_hh_l0同理
"""
def custom_gru(input, h0, w_ih, w_hh, b_ih, b_hh):
    """
    :param input:
    :param h0:
    :param w_ih: W_ir,W_iz,W_in三个拼接起来的 (3*hidden_size,input_size)
    :param w_hh: W_hr,W_hz,W_hn三个拼接起来的 (3*hidden_size,hidden_size)
    :param b_ih: 三个拼接起来的
    :param b_hh: 三个拼接起来的
    :return:
    """

    # define the w_times_x
    batch_size, seq_len, input_size = input.shape
    hidden_size = w_ih.shape[0] // 3

    # w_ih.shape=torch.Size([3*hidden_size,input_size])
    # batch_w_ih.shape = torch.Size([batch_size,3*hidden_size,input_size])
    batch_w_ih = w_ih.unsqueeze(0).tile([batch_size, 1, 1])

    # h0.shape=prev_h.shape=torch.Size([batchsize,hidden_size])
    prev_h = h0

    # w_hh.shape=torch.Size([3*hidden_size,hidden_size])
    # batch_w_hh=torch.Size([batch_size,3*hidden_size,hidden_size])
    batch_w_hh = w_hh.unsqueeze(0).tile([batch_size, 1, 1])

    output = torch.zeros([batch_size, seq_len, hidden_size])

    for t in range(seq_len):
        # input.shape=torch.Size([batch_size,seq_len,input_size])
        # x.shape=torch.Size([batch_size,input_size])->([batch_size,input_size,1])
        x = input[:, t, :].unsqueeze(-1)

        # batch_w_ih.shape=torch.Size([batch_size,3*hidden_size,input_size])
        # w_ih_times_x.shape=torch.Size([batch_size,3*hidden_size,1])->([batch_size,3*hidden_size])
        w_ih_times_x = torch.bmm(batch_w_ih, x).squeeze(-1)

        # batch_w_hh.shape=torch.Size([batch_size,3*hidden_size,hidden_size])
        # prev_h.shape=torch.Size([batch_size,hidden_size])->([batch_size,hidden_size,1])
        # w_hh_times_x.shape=torch.Size([batch_size,3*hidden_size,1]) ->([batch_size,3*hidden_size])
        w_hh_times_x = torch.bmm(batch_w_hh, prev_h.unsqueeze(-1)).squeeze(-1)

        # 重置门
        r_t = torch.sigmoid(w_ih_times_x[:, :hidden_size]
                            + b_ih[:hidden_size]
                            + w_hh_times_x[:, :hidden_size]
                            + b_hh[:hidden_size])
        # 更新门
        z_t = torch.sigmoid(w_ih_times_x[:, hidden_size:2 * hidden_size]
                            + b_ih[hidden_size:2 * hidden_size]
                            + w_hh_times_x[:, hidden_size:2 * hidden_size]
                            + b_hh[hidden_size:2 * hidden_size])
        # 候选状态
        n_t = torch.tanh(w_ih_times_x[:, 2 * hidden_size:3 * hidden_size]
                         + b_ih[2 * hidden_size:3 * hidden_size]
                         + r_t
                         * (w_hh_times_x[:, 2 * hidden_size:3 * hidden_size] + b_hh[2 * hidden_size:3 * hidden_size]))

        prev_h = (1 - z_t) * n_t + z_t * prev_h  # 增量更新得到当前时刻最新隐含状态

        output[:, t, :] = prev_h

    return output, prev_h.unsqueeze(0)

cu_input = input_one
cu_h0 = h0
cu_w_ih = gru_layer.weight_ih_l0
cu_w_hh = gru_layer.weight_hh_l0
cu_b_ih = gru_layer.bias_ih_l0
cu_b_hh = gru_layer.bias_hh_l0

custom_output, custom_hn = custom_gru(cu_input, cu_h0, cu_w_ih, cu_w_hh, cu_b_ih, cu_b_hh)

print(f"custom_output.shape={custom_output.shape}")
print(f"custom_hn.shape={custom_hn.shape}")

print(f"custom_output={custom_output}")
print(f"custom_hn={custom_hn}")

print("output is equal ?")
print(torch.isclose(custom_output, output_api))
print("h_n is equal ?")
print(torch.isclose(custom_hn, h_n_api))
...
output is equal ?
tensor([[[True, True, True, True, True],
         [True, True, True, True, True],
         [True, True, True, True, True]],

        [[True, True, True, True, True],
         [True, True, True, True, True],
         [True, True, True, True, True]]])
h_n is equal ?
tensor([[[True, True, True, True, True],
         [True, True, True, True, True]]])

你可能感兴趣的:(深度学习,#,+,Pytorch,pytorch,自然语言处理,gru)