Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率。影响Hive效率的几乎从不是数据量过大,而是数据倾斜、数据冗余、job或I/O过多、MapReduce分配不合理等等。对Hive的调优既包含对HiveQL语句本身的优化,也包含Hive配置项和MR方面的调整。
由于在写的过程中发现篇幅过长,因此决定拆成上下两篇发布。上篇包含从开头到join优化的内容。
最基本的操作。所谓列裁剪就是在查询时只读取需要的列,分区裁剪就是只读取需要的分区。以我们的日历记录表为例:
select uid,event_type,record_data
from calendar_record_log
where pt_date >= 20190201 and pt_date <= 20190224
and status = 0;
当列很多或者数据量很大时,如果select *或者不指定分区,全列扫描和全表扫描效率都很低。
Hive中与列裁剪优化相关的配置项是hive.optimize.cp
,与分区裁剪优化相关的则是hive.optimize.pruner
,默认都是true。在HiveQL解析阶段对应的则是ColumnPruner逻辑优化器。
在关系型数据库如MySQL中,也有谓词下推(Predicate Pushdown,PPD)的概念。它就是将SQL语句中的where谓词逻辑都尽可能提前执行,减少下游处理的数据量。
例如以下HiveQL语句:
select a.uid,a.event_type,b.topic_id,b.title
from calendar_record_log a
left outer join (
select uid,topic_id,title from forum_topic
where pt_date = 20190224 and length(content) >= 100
) b on a.uid = b.uid
where a.pt_date = 20190224 and status = 0;
对forum_topic做过滤的where语句写在子查询内部,而不是外部。Hive中有谓词下推优化的配置项hive.optimize.ppd
,默认值true,与它对应的逻辑优化器是PredicatePushDown。该优化器就是将OperatorTree中的FilterOperator向上提,见下图。
上面的链接中是一篇讲解HiveQL解析与执行过程的好文章,前文提到的优化器、OperatorTree等概念在其中也有详细的解释,非常推荐。
HiveQL中的order by与其他SQL方言中的功能一样,就是将结果按某字段全局排序,这会导致所有map端数据都进入一个reducer中,在数据量大时可能会长时间计算不完。
如果使用sort by,那么还是会视情况启动多个reducer进行排序,并且保证每个reducer内局部有序。为了控制map端数据分配到reducer的key,往往还要配合distribute by一同使用。如果不加distribute by的话,map端数据就会随机分配到reducer。
举个例子,假如要以UID为key,以上传时间倒序、记录类型倒序输出记录数据:
select uid,upload_time,event_type,record_data
from calendar_record_log
where pt_date >= 20190201 and pt_date <= 20190224
distribute by uid
sort by upload_time desc,event_type desc;
当要统计某一列的去重数时,如果数据量很大,count(distinct)就会非常慢,原因与order by类似,count(distinct)逻辑只会有很少的reducer来处理。这时可以用group by来改写:
select count(1) from (
select uid from calendar_record_log
where pt_date >= 20190101
group by uid
) t;
但是这样写会启动两个MR job(单纯distinct只会启动一个),所以要确保数据量大到启动job的overhead远小于计算耗时,才考虑这种方法。当数据集很小或者key的倾斜比较明显时,group by还可能会比distinct慢。
那么如何用group by方式同时统计多个列?下面是解决方法:
select t.a,sum(t.b),count(t.c),count(t.d) from (
select a,b,null c,null d from some_table
union all
select a,0 b,c,null d from some_table group by a,c
union all
select a,0 b,null c,d from some_table group by a,d
) t;
map端预聚合
group by时,如果先起一个combiner在map端做部分预聚合,可以有效减少shuffle数据量。预聚合的配置项是hive.map.aggr
,默认值true,对应的优化器为GroupByOptimizer,简单方便。
通过hive.groupby.mapaggr.checkinterval
参数也可以设置map端预聚合的行数阈值,超过该值就会分拆job,默认值100000。
倾斜均衡配置项
group by时如果某些key对应的数据量过大,就会发生数据倾斜。Hive自带了一个均衡数据倾斜的配置项hive.groupby.skewindata
,默认值false。
其实现方法是在group by时启动两个MR job。第一个job会将map端数据随机输入reducer,每个reducer做部分聚合,相同的key就会分布在不同的reducer中。第二个job再将前面预处理过的数据按key聚合并输出结果,这样就起到了均衡的效果。
但是,配置项毕竟是死的,单纯靠它有时不能根本上解决问题,因此还是建议自行了解数据倾斜的细节,并优化查询语句。
join优化是一个复杂的话题,下面先说5点最基本的注意事项。
build table(小表)前置
在最常见的hash join方法中,一般总有一张相对小的表和一张相对大的表,小表叫build table,大表叫probe table。如下图所示。
Hive在解析带join的SQL语句时,会默认将最后一个表作为probe table,将前面的表作为build table并试图将它们读进内存。如果表顺序写反,probe table在前面,引发OOM的风险就高了。
在维度建模数据仓库中,事实表就是probe table,维度表就是build table。假设现在要将日历记录事实表和记录项编码维度表来join:
select a.event_type,a.event_code,a.event_desc,b.upload_time
from calendar_event_code a
inner join (
select event_type,upload_time from calendar_record_log
where pt_date = 20190225
) b on a.event_type = b.event_type;
多表join时key相同
这种情况会将多个join合并为一个MR job来处理,例如:
select a.event_type,a.event_code,a.event_desc,b.upload_time
from calendar_event_code a
inner join (
select event_type,upload_time from calendar_record_log
where pt_date = 20190225
) b on a.event_type = b.event_type
inner join (
select event_type,upload_time from calendar_record_log_2
where pt_date = 20190225
) c on a.event_type = c.event_type;
如果上面两个join的条件不相同,比如改成a.event_code = c.event_code
,就会拆成两个MR job计算。
负责这个的是相关性优化器CorrelationOptimizer,它的功能除此之外还非常多,逻辑复杂,参考Hive官方的文档可以获得更多细节:https://cwiki.apache.org/confluence/display/Hive/Correlation+Optimizer。
利用map join特性
map join特别适合大小表join的情况。Hive会将build table和probe table在map端直接完成join过程,消灭了reduce,效率很高。
select /*+mapjoin(a)*/ a.event_type,b.upload_time
from calendar_event_code a
inner join (
select event_type,upload_time from calendar_record_log
where pt_date = 20190225
) b on a.event_type < b.event_type;
上面的语句中加了一条map join hint,以显式启用map join特性。早在Hive 0.8版本之后,就不需要写这条hint了。map join还支持不等值连接,应用更加灵活。
map join的配置项是hive.auto.convert.join
,默认值true,对应逻辑优化器是MapJoinProcessor。
还有一些参数用来控制map join的行为,比如hive.mapjoin.smalltable.filesize
,当build table大小小于该值就会启用map join,默认值25000000(25MB)。还有hive.mapjoin.cache.numrows
,表示缓存build table的多少行数据到内存,默认值25000。
分桶表map join
map join对分桶表还有特别的优化。由于分桶表是基于一列进行hash存储的,因此非常适合抽样(按桶或按块抽样)。
它对应的配置项是hive.optimize.bucketmapjoin
,优化器是BucketMapJoinOptimizer。但我们的业务中用分桶表较少,所以就不班门弄斧了,只是提一句。
倾斜均衡配置项
这个配置与上面group by的倾斜均衡配置项异曲同工,通过hive.optimize.skewjoin
来配置,默认false。
如果开启了,在join过程中Hive会将计数超过阈值hive.skewjoin.key
(默认100000)的倾斜key对应的行临时写进文件中,然后再启动另一个job做map join生成结果。通过hive.skewjoin.mapjoin.map.tasks
参数还可以控制第二个job的mapper数量,默认10000。
再重复一遍,通过自带的配置项经常不能解决数据倾斜问题。join是数据倾斜的重灾区,后面还要介绍在SQL层面处理倾斜的各种方法。