python-opencv表面缺陷检测(模式识别)

python-opencv表面缺陷检测(模式识别)_第1张图片

对于现在很多工业检测,特别是对一些精密的器件进行筛选,往往都是像素级别的,十分的精确。

主要思想
  • 将图像转化为二值图像
  • 在对图像进行腐蚀/膨胀处理
  • 在进行轮廓检测
  • 筛选目标大小符合的轮廓(排除误差小的轮廓)
  • 在在进行膨胀化处理,将轮廓信息绘制出
import cv2
import os
import numpy as np
import time


t1 = time.time()
img = cv2.imread('./label/28901647.jpg', 0)
img_copy = cv2.imread('./label/28901647.jpg', 0)
mask = np.zeros_like(img)
print(np.shape(img))
# 先利用二值化去除图片噪声
ret, img = cv2.threshold(img, 80, 255, cv2.THRESH_BINARY)




es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (4, 2))
img = cv2.dilate(img, es, iterations=1)  # 形态学膨胀


kernel = np.ones(shape=[5,5],dtype=np.uint8)
img = cv2.erode(img,kernel=kernel)  # 腐蚀操作

cv2.imshow('aa',img)
cv2.waitKey(0)


contours, _ = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)


n = len(contours)  # 轮廓的个数
cv_contours = []
for contour in contours:
    area = cv2.contourArea(contour)

    if area <= 500:# 筛选面积大于500的,小于500的全部变为255,
        cv_contours.append(contour)
        # 方式一
        # x, y, w, h = cv2.boundingRect(contour) # 这个函数可以获得一个图像的最小矩形边框一些信息,参数img是一个二值图像,它可以返回四个参数,左上角坐标,矩形的宽高 (轮廓集合  contour)
        # img[y:y + h, x:x + w] = 255
        
    else:

        cv2.drawContours(img_copy, [contour], -1, (0, 0, 255), 0) # 多边形轮廓绘制

        print('area:', area)
        continue
# 方式二
cv2.fillPoly(img, cv_contours, (255, 255, 255)) # 多个多边形填充

t2 = time.time()
print('时间:',t2-t1)
cv2.imwrite('./output/28901647.jpg', img)
1、寻找到的轮廓信息(缺陷)

python-opencv表面缺陷检测(模式识别)_第2张图片

2、通过腐蚀、膨胀后的,筛选出的较大缺陷

python-opencv表面缺陷检测(模式识别)_第3张图片
python-opencv表面缺陷检测(模式识别)_第4张图片

3、通过不同程度的膨胀腐蚀、缺陷面积筛选

python-opencv表面缺陷检测(模式识别)_第5张图片
python-opencv表面缺陷检测(模式识别)_第6张图片
python-opencv表面缺陷检测(模式识别)_第7张图片

python-opencv表面缺陷检测(模式识别)_第8张图片

python-opencv表面缺陷检测(模式识别)_第9张图片

希望这个对你有用!
谢谢点赞评论!

你可能感兴趣的:(OpenCV,opencv,python,计算机视觉,空洞检测,泛洪填充)