TensorFlow学习笔记6:神经网络搭建(layer,estimator等)

这次来看一看如何用layer等API来搭建神经网络。

from __future__ import print_function

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

learning_rate = 0.1
num_steps = 1000
batch_size = 128
display_step = 100

# Network Parameters
n_hidden_1 = 256 # 1st layer number of neurons
n_hidden_2 = 256 # 2nd layer number of neurons
num_input = 784 # MNIST data input (img shape: 28*28)
num_classes = 10 # MNIST total classes (0-9 digits)

# Define the input function for training
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.train.images}, y=mnist.train.labels,
    batch_size=batch_size, num_epochs=None, shuffle=True)
基本的参数设置和上一篇博客中没有区别。

这里,输入函数numpy_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=None, queue_capacity=1000, num_threads=1) 中x必须为一个字典,y为数组或者None。

接下来定义神经网络。

# Define the neural network
def neural_net(x_dict):
    # TF Estimator input is a dict, in case of multiple inputs
    x = x_dict['images']
    # Hidden fully connected layer with 256 neurons
    layer_1 = tf.layers.dense(x, n_hidden_1)
    # Hidden fully connected layer with 256 neurons
    layer_2 = tf.layers.dense(layer_1, n_hidden_2)
    # Output fully connected layer with a neuron for each class
    out_layer = tf.layers.dense(layer_2, num_classes)
    return out_layer
可以看到,与上一篇博客不同,这里用tf.layers.dense 直接建立了全连接层。

接下来,建立estimator。先定义model_fn, 建立神经网络,定义损失函数,优化,并且进行相关的评估工作。

model = tf.estimator.Estimator(model_fn) 可以建立estimator。

# Define the model function (following TF Estimator Template)
def model_fn(features, labels, mode):
    
    # Build the neural network
    logits = neural_net(features)
    
    # Predictions
    pred_classes = tf.argmax(logits, axis=1)
    pred_probas = tf.nn.softmax(logits)
    
    # If prediction mode, early return
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(mode, predictions=pred_classes) 
        
    # Define loss and optimizer
    loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=logits, labels=tf.cast(labels, dtype=tf.int32)))
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss_op, global_step=tf.train.get_global_step())
    
    # Evaluate the accuracy of the model
    acc_op = tf.metrics.accuracy(labels=labels, predictions=pred_classes)
    
    # TF Estimators requires to return a EstimatorSpec, that specify
    # the different ops for training, evaluating, ...
    estim_specs = tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=pred_classes,
      loss=loss_op,
      train_op=train_op,
      eval_metric_ops={'accuracy': acc_op})

    return estim_specs
# Build the Estimator
model = tf.estimator.Estimator(model_fn)
开始训练:

# Train the Model
model.train(input_fn, steps=num_steps)
对训练好的模型进行评估:

# Evaluate the Model
# Define the input function for evaluating
input_fn = tf.estimator.inputs.numpy_input_fn(
    x={'images': mnist.test.images}, y=mnist.test.labels,
    batch_size=batch_size, shuffle=False)
# Use the Estimator 'evaluate' method
model.evaluate(input_fn)





你可能感兴趣的:(TensorFlow,机器学习,神经网络)