(6)六轴机械臂的运动学正、逆解

下面在前面的ur5机械臂的DH参数基础是对其正逆解进行求解,为了后面能在MATLAB中利用stl文件进行实际显示,这里以标准DH参数为例进行讲解。(修正DH参数在用plot3d函数是显示失败,不知道是不是这个函数只能显示标准dh参数的机械臂模型,有知道的网友可以在评论里告知一下,谢谢。

一、运动学正解:

机器人正运动学是在已知各连杆相对位置关系(关节角)的情况下,得到末端执行器的位姿。在标准DH参数下相邻坐标系之间的齐次变换矩阵为:

(6)六轴机械臂的运动学正、逆解_第1张图片

 则,正解代码如下:

function    [T06,Pos]=ForwardSolver_MDH(theta)

    DH_JXB =[90    0      144  0; 
             0     264    0    90;
             0     236    0    0; 
             -90   0      106  -90; 
             90    0      114  0; 
             0     0      67   0];
    d=DH_JXB(1:6,3); 
    a=DH_JXB(1:6,2); 
    DH_JXB(1:6,1)=DH_JXB(1:6,1)/180*pi; %度数转化为弧度
    alp=DH_JXB(1:6,1); 
    offset=[0 90 0 -90 0 0];
    theta=(theta+offset)*pi/180;

for i=1:6
        T{i}=[     cos(theta(i)),       -sin(theta(i))*cos(alp(i)),                  sin(theta(i))*sin(alp(i)),     a(i)*cos(theta(i));
                   sin(theta(i)),       cos(theta(i))*cos(alp(i)),       
-cos(theta(i))*sin(alp(i)),    a(i)*sin(theta(i));
0,             sin(alp(i)),                      cos(alp(i)),                  d(i);
0,                   0,                               0,                          1
             ]

    end

    disp('Homogeneous transformation matrix T06:')
    T06=T{1}*T{2}*T{3}*T{4}*T{5}*T{6}
    %% 求末端位置
    X=T06(1,4);Y=T06(2,4);Z=T06(3,4);
    %% 求末端姿态Rotations about X, Y, Z axes (for a robot gripper)
    R=T06;
    if abs(abs(R(1,3)) - 1) < eps  % when |R13| == 1
        % singularity
        rpy(1) = 0;  % roll is zero
        if R(1,3) > 0
        rpy(3) = atan2( R(3,2), R(2,2));   % R+Y
        else
             rpy(3) = -atan2( R(2,1), R(3,1));   % R-Y
        end
        rpy(2) = asin(R(1,3));
    else
        rpy(1) = -atan2(R(1,2), R(1,1));
        rpy(3) = -atan2(R(2,3), R(3,3));

        rpy(2) = atan(R(1,3)*cos(rpy(1))/R(1,1));
    end
    RPY=rpy*180/pi;
    Rall=RPY(1);Pitch=RPY(2);Yaw=RPY(3);
    Pos=[X,Y,Z,Rall,Pitch,Yaw];
end

这里对姿态的描述进行说明:在MATLAB中RPY欧拉角是世界坐标系下的XYZ欧拉角;

RPY角的定义如下:

 输入端位姿形式为:(x,y,z,\gamma ,\beta ,\alpha )

MATLAB中对应的RPY旋转矩阵如下:

 这是个旋转矩阵,与齐次矩阵中的旋转矩阵等价,所以根据齐次矩阵中的旋转矩阵便可以得到末端的姿态RPY。

二、运动学逆解:

机器人逆运动学是已知机器人末端执行器的位姿,通过变换矩阵T得到机器人各关节的角度。求解逆运动学有解析法、几何法、迭代法。这里介绍解析法。如果机器人末端三轴的轴线始终交于一点则该机器人必有解析解

1、得到齐次变换矩阵:

利用MATLAB求解其齐次变换矩阵:

syms a1 a2 a3 a4 a5 a6 d1 d2 d3 d4 d5 d6 a1p1 a1p2 a1p3 a1p4 a1p5 a1p6 th1 th2 th3 th4 th5 th6;
a=[0 a2 a3 0 0 0];
d=[d1 0 0 d4 d5 d6];
alp=[90 0 0 -90 90 0]*pi/180;
theta=[th1 th2 th3 th4 th5 th6];
% theta(1)=t1;theta(2)=t2;theta(3)=t3;theta(4)=t4;theta(5)=t5;theta(6)=t6;

 T01=[         cos(theta(1)),       0,      sin(theta(1)),     a(1)*cos(theta(1));
               sin(theta(1)),       0,      -cos(theta(1)),    a(1)*sin(theta(1));
               0,                   1,      0,                 d(1);
               0,                   0,      0,                 1
         ];

 T12=[         cos(theta(2)),       -sin(theta(2)),      0,     a(2)*cos(theta(2));
               sin(theta(2)),       cos(theta(2)),       0,     a(2)*sin(theta(2));
               0,                   0,                   1,     d(2);
               0,                   0,                   0,     1
         ];
 T23=[         cos(theta(3)),       -sin(theta(3)),      0,     a(3)*cos(theta(3));
               sin(theta(3)),       cos(theta(3)),       0,     a(3)*sin(theta(3));
               0,                   0,                   1,     d(3);
               0,                   0,                   0,     1
         ];
 T34=[         cos(theta(4)),       0,      -sin(theta(4)),     a(4)*cos(theta(4));
               sin(theta(4)),       0,      cos(theta(4)),      a(4)*sin(theta(4));
               0,                   -1,     0,                  d(4);
               0,                   0,      0,                  1
         ];
 T45=[         cos(theta(5)),       0,      sin(theta(5)),      a(5)*cos(theta(5));
               sin(theta(5)),       0,      -cos(theta(5)),     a(5)*sin(theta(5));
               0,                   1,      0,                  d(5);
               0,                   0,      0,                  1
         ];
 T56=[         cos(theta(6)),       -sin(theta(6)),      0,     a(6)*cos(theta(6));
               sin(theta(6)),       cos(theta(6)),       0      a(6)*sin(theta(6));
               0,                   0,                   1,     d(6);
               0,                   0,                   0,     1
         ];


T06=simplify(T01*T12*T23*T34*T45*T56)

利用三角函数的两角和差公式进行化简:

(6)六轴机械臂的运动学正、逆解_第2张图片

可以得到:

(6)六轴机械臂的运动学正、逆解_第3张图片

逆解输入的参数是末端的位姿Pos=(x,y,z,\gamma ,\beta ,\alpha ) ,其中\gamma是绕z轴的旋转角度,\beta是绕y轴的旋转角度,\alpha是绕x轴的旋转角度。这里还需要注意一个问题,MATLAB的.teach()函数输出的图形角度如下图所示:R表示的是世界坐标系到末端坐标系需要绕z轴转动的角度;P表示的是世界坐标系到末端坐标系需要绕y轴转动的角度;Y表示的是世界坐标系到末端坐标系需要绕x轴转动的角度;

(6)六轴机械臂的运动学正、逆解_第4张图片

 则R对应\gamma,P对应\beta,Y对应\alpha;表示的是末端坐标系绕自身的xyz轴旋转对应的角度后会与基坐标系平行。这里利用XYZ欧拉角公式,

其对应的旋转矩阵为:

根据输入的Pos参数也能得到一个齐次矩阵:

(6)六轴机械臂的运动学正、逆解_第5张图片

简记为:

(6)六轴机械臂的运动学正、逆解_第6张图片

 而T06乘以T01^{-1}得到下式:

(6)六轴机械臂的运动学正、逆解_第7张图片

由于不存在常数项(不包含角度θ的项);所以需要进一步化简,由上式知如果d6=0则存在常数项。

所以,我们做如下处理,类比于增加一个新连杆,且该连杆不转动而是与连杆6固连,如下表所示:

(6)六轴机械臂的运动学正、逆解_第8张图片

 然后让d6=0,而d7=d6,新连杆的坐标系与连杆6完全重合,(这里需要注意变化前后总的齐次变换矩阵是不变的即原来的T06与现在的T07是一模一样的即T06_{old}=T07)其齐次矩阵为:

 (6)六轴机械臂的运动学正、逆解_第9张图片

 (6)六轴机械臂的运动学正、逆解_第10张图片

 

 (6)六轴机械臂的运动学正、逆解_第11张图片

 又,(6)六轴机械臂的运动学正、逆解_第12张图片

 故:

(6)六轴机械臂的运动学正、逆解_第13张图片

 ​​​​​​​(6)六轴机械臂的运动学正、逆解_第14张图片

然后便可以求出相应角度的表达式:

这里首先介绍个万能公式

(6)六轴机械臂的运动学正、逆解_第15张图片

 ①求解关节1、5、6角度:

由上面的R34相等得:

 由R31、R32、R33相等得:

(6)六轴机械臂的运动学正、逆解_第16张图片

 (6)六轴机械臂的运动学正、逆解_第17张图片

 ②、求关节2、3、4的角度:

由R13、R23相等得:

(6)六轴机械臂的运动学正、逆解_第18张图片

由R14、R24相等得:

(6)六轴机械臂的运动学正、逆解_第19张图片

 (6)六轴机械臂的运动学正、逆解_第20张图片

 (6)六轴机械臂的运动学正、逆解_第21张图片

 以上便是所有关节角度的求解公式。

MATLAB代码如下(有点长删掉了部分):

function AllSloverTheta =InverseSolver_MDH(Pos)
coder.extrinsic('disp');
AllSloverTheta = zeros(8,6);A=zeros(1,4);

    DH_JXB =[90  0    144   0; 
             0   264  0     90;
             0   236  0     0; 
             -90 0    106   -90; 
             90  0    114   0; 
             0   0    67    0];

    p2=DH_JXB(2,4);  %第二轴偏移角度
    p4=DH_JXB(4,4);  %第四轴偏移角度
    %杆长数据
    a2=DH_JXB(2,2);
    a3=DH_JXB(3,2);
    d1=DH_JXB(1,3);
    d4=DH_JXB(4,3);
    d5=DH_JXB(5,3);
    %d6=DH_JXB(6,3);
    %输入的位姿数据
    X=Pos(1);
    Y=Pos(2);
    Z=Pos(3);
    gama=Pos(4)*pi/180;   %绕z轴旋转
    beta=Pos(5)*pi/180;   %绕y轴旋转
    alpha=Pos(6)*pi/180;  %绕x轴旋转
    %逆解中增加的第七杆DH参数
    theta7=0; %角度为0
    a6=0;
    afa6=0;
    d7=DH_JXB(6,3); %杆长为第六杆的长度
    %得到第七轴的齐次变换矩阵
    T67=[cos(theta7),            -sin(theta7),            0,           a6;
         sin(theta7)*cos(afa6),  cos(theta7)*cos(afa6),   -sin(afa6),  -sin(afa6)*d7;
         sin(theta7)*sin(afa6),  cos(theta7)*sin(afa6),   cos(afa6),   cos(afa6)*d7;
         0,                      0,                       0,           1];
   %由末端位姿(x,y,z,gama,beta,alpha)得到与GUI界面对应的是(x,y,z,R,P,Y)
   T_goat=[cos(beta)*cos(gama),                                  -cos(beta)*sin(gama),                                   sin(beta),            X;
           sin(alpha)*sin(beta)*cos(gama)+cos(alpha)*sin(gama),  -sin(alpha)*sin(beta)*sin(gama)+cos(alpha)*cos(gama),   -sin(alpha)*cos(beta),Y;
           -cos(alpha)*sin(beta)*cos(gama)+sin(alpha)*sin(gama), cos(alpha)*sin(beta)*sin(gama)+sin(alpha)*cos(gama),    cos(alpha)*cos(beta), Z;
           0,                                                    0,                                                      0,                    1];
    %得到新的变换矩阵
    T06=T_goat/T67;
    
    nx=T06(1,1);
    ny=T06(2,1);
    ox=T06(1,2);
    oy=T06(2,2);
    ax=T06(1,3);
    ay=T06(2,3);
    az=T06(3,3);
    px=T06(1,4);
    py=T06(2,4);
    pz=T06(3,4);
    
    k=0;
    ForJudgment=px^2+py^2-d4^2;
    
    if ForJudgment<-1e-6
        disp('Out of workspace Unable to solve');
    else      
        if ForJudgment>=-1e-6&&ForJudgment<0
            ForJudgment=0;
        end
        %求解θ1
        theta1_1=atan2(py,px)-atan2(-d4,sqrt(ForJudgment));
        theta1_2=atan2(py,px)-atan2(-d4,-sqrt(ForJudgment));
        %求解θ5
        S5_1=sqrt((sin(theta1_1)*nx-cos(theta1_1)*ny)^2+(sin(theta1_1)*ox-cos(theta1_1)*oy)^2);
        theta5_1=atan2(S5_1,sin(theta1_1)*ax-cos(theta1_1)*ay);

        S5_2=-sqrt((sin(theta1_1)*nx-cos(theta1_1)*ny)^2+(sin(theta1_1)*ox-cos(theta1_1)*oy)^2);
        theta5_2=atan2(S5_2,sin(theta1_1)*ax-cos(theta1_1)*ay);

        S5_3=sqrt((sin(theta1_2)*nx-cos(theta1_2)*ny)^2+(sin(theta1_2)*ox-cos(theta1_2)*oy)^2);
        theta5_3=atan2(S5_3,sin(theta1_2)*ax-cos(theta1_2)*ay);

        S5_4=-sqrt((sin(theta1_2)*nx-cos(theta1_2)*ny)^2+(sin(theta1_2)*ox-cos(theta1_2)*oy)^2);
        theta5_4=atan2(S5_4,sin(theta1_2)*ax-cos(theta1_2)*ay);
        
        %下面这些量与θ5对应,都有四个解
        S234 = [0; 0; 0; 0];
        C234 = [0; 0; 0; 0];
        B    = [0; 0; 0; 0];
        B1   = [0; 0; 0; 0];
        B2   = [0; 0; 0; 0];
        C    = [0; 0; 0; 0];
        %8个解
        theta2   = [0; 0; 0; 0; 0; 0; 0; 0];
        theta23  = [0; 0; 0; 0; 0; 0; 0; 0];
        theta234 = [0; 0; 0; 0; 0; 0; 0; 0];
        theta3   = [0; 0; 0; 0; 0; 0; 0; 0];
        theta4   = [0; 0; 0; 0; 0; 0; 0; 0];
        
        %s5不能为0
        if abs(S5_1)>1e-6 
            theta6_1=atan2((sin(theta1_1)*ox-cos(theta1_1)*oy)/S5_1,(-sin(theta1_1)*nx+cos(theta1_1)*ny)/S5_1);
            S234(1)=az/S5_1;
            C234(1)=(cos(theta1_1)*ax+sin(theta1_1)*ay)/S5_1;
            theta234(1)=atan2(S234(1),C234(1));
            B1(1)=cos(theta1_1)*px+sin(theta1_1)*py+d5*S234(1);
            B2(1)=pz-d1-d5*C234(1);
            A(1)=-2*B2(1)*a2;
            B(1)=2*B1(1)*a2;
            C(1)=B1(1)^2+B2(1)^2+a2^2-a3^2;
            if A(1)^2+B(1)^2-C(1)^2>=0
                theta2(1)=atan2(B(1),A(1))-atan2(C(1),sqrt(A(1)^2+B(1)^2-C(1)^2));
                theta2(2)=atan2(B(1),A(1))-atan2(C(1),-sqrt(A(1)^2+B(1)^2-C(1)^2));
                theta23(1)=atan2((B2(1)-a2*sin(theta2(1)))/a3,(B1(1)-a2*cos(theta2(1)))/a3);
                theta23(2)=atan2((B2(1)-a2*sin(theta2(2)))/a3,(B1(1)-a2*cos(theta2(2)))/a3);
                theta4(1)=theta234(1)-theta23(1);
                theta4(2)=theta234(1)-theta23(2);
                theta3(1)=theta23(1)-theta2(1);
                theta3(2)=theta23(2)-theta2(2);
                AllSloverTheta(k+1,:)=[theta1_1 theta2(1)-p2*pi/180 theta3(1) theta4(1)-p4*pi/180 theta5_1 theta6_1];
                AllSloverTheta(k+2,:)=[theta1_1 theta2(2)-p2*pi/180 theta3(2) theta4(2)-p4*pi/180 theta5_1 theta6_1];
                k=k+2;
            end
        end
        %s5<0
        if abs(S5_2)>1e-6
            theta6_2=atan2((sin(theta1_1)*ox-cos(theta1_1)*oy)/S5_2,(-sin(theta1_1)*nx+cos(theta1_1)*ny)/S5_2);
            S234(2)=az/S5_2;
            C234(2)=(cos(theta1_1)*ax+sin(theta1_1)*ay)/S5_2;
            theta234(2)=atan2(S234(2),C234(2));
            B1(2)=cos(theta1_1)*px+sin(theta1_1)*py+d5*S234(2);
            B2(2)=pz-d1-d5*C234(2);
            A(2)=-2*B2(2)*a2;
            B(2)=2*B1(2)*a2;
            C(2)=B1(2)^2+B2(2)^2+a2^2-a3^2;
            if A(2)^2+B(2)^2-C(2)^2>=0
                theta2(3)=atan2(B(2),A(2))-atan2(C(2),sqrt(A(2)^2+B(2)^2-C(2)^2));
                theta2(4)=atan2(B(2),A(2))-atan2(C(2),-sqrt(A(2)^2+B(2)^2-C(2)^2));
                theta23(3)=atan2((B2(2)-a2*sin(theta2(3)))/a3,(B1(2)-a2*cos(theta2(3)))/a3);
                theta23(4)=atan2((B2(2)-a2*sin(theta2(4)))/a3,(B1(2)-a2*cos(theta2(4)))/a3);
                theta4(3)=theta234(2)-theta23(3);
                theta4(4)=theta234(2)-theta23(4);
                theta3(3)=theta23(3)-theta2(3);
                theta3(4)=theta23(4)-theta2(4);
                AllSloverTheta(k+1,:)=[theta1_1 theta2(3)-p2*pi/180 theta3(3) theta4(3)-p4*pi/180 theta5_2 theta6_2];
                AllSloverTheta(k+2,:)=[theta1_1 theta2(4)-p2*pi/180 theta3(4) theta4(4)-p4*pi/180 theta5_2 theta6_2];
                k=k+2;
            end
        end
        if abs(S5_3)>1e-6
            theta6_3=atan2((sin(theta1_2)*ox-cos(theta1_2)*oy)/S5_3,(-sin(theta1_2)*nx+cos(theta1_2)*ny)/S5_3);
            S234(3)=az/S5_3;
            C234(3)=(cos(theta1_2)*ax+sin(theta1_2)*ay)/S5_3;
            theta234(3)=atan2(S234(3),C234(3));
            B1(3)=cos(theta1_2)*px+sin(theta1_2)*py+d5*S234(3);
            B2(3)=pz-d1-d5*C234(3);
            A(3)=-2*B2(3)*a2;
            B(3)=2*B1(3)*a2;
            C(3)=B1(3)^2+B2(3)^2+a2^2-a3^2;
            if A(3)^2+B(3)^2-C(3)^2>=0
                theta2(5)=atan2(B(3),A(3))-atan2(C(3),sqrt(A(3)^2+B(3)^2-C(3)^2));
                theta2(6)=atan2(B(3),A(3))-atan2(C(3),-sqrt(A(3)^2+B(3)^2-C(3)^2));
                theta23(5)=atan2((B2(3)-a2*sin(theta2(5)))/a3,(B1(3)-a2*cos(theta2(5)))/a3);
                theta23(6)=atan2((B2(3)-a2*sin(theta2(6)))/a3,(B1(3)-a2*cos(theta2(6)))/a3);
                theta4(5)=theta234(3)-theta23(5);
                theta4(6)=theta234(3)-theta23(6);
                theta3(5)=theta23(5)-theta2(5);
                theta3(6)=theta23(6)-theta2(6);
                AllSloverTheta(k+1,:)=[theta1_2 theta2(5)-p2*pi/180 theta3(5) theta4(5)-p4*pi/180 theta5_3 theta6_3];
                AllSloverTheta(k+2,:)=[theta1_2 theta2(6)-p2*pi/180 theta3(6) theta4(6)-p4*pi/180 theta5_3 theta6_3];
                k=k+2;
            end
        end
        if abs(S5_4)>1e-6
            theta6_4=atan2((sin(theta1_2)*ox-cos(theta1_2)*oy)/S5_4,(-sin(theta1_2)*nx+cos(theta1_2)*ny)/S5_4);
            S234(4)=az/S5_4;
            C234(4)=(cos(theta1_2)*ax+sin(theta1_2)*ay)/S5_4;
            theta234(4)=atan2(S234(4),C234(4));
            B1(4)=cos(theta1_2)*px+sin(theta1_2)*py+d5*S234(4);
            B2(4)=pz-d1-d5*C234(4);
            A(4)=-2*B2(4)*a2;
            B(4)=2*B1(4)*a2;
            C(4)=B1(4)^2+B2(4)^2+a2^2-a3^2;
            if A(4)^2+B(4)^2-C(4)^2>=0
                theta2(7)=atan2(B(4),A(4))-atan2(C(4),sqrt(A(4)^2+B(4)^2-C(4)^2));
                theta2(8)=atan2(B(4),A(4))-atan2(C(4),-sqrt(A(4)^2+B(4)^2-C(4)^2));
                theta23(7)=atan2((B2(4)-a2*sin(theta2(7)))/a3,(B1(4)-a2*cos(theta2(7)))/a3);
                theta23(8)=atan2((B2(4)-a2*sin(theta2(8)))/a3,(B1(4)-a2*cos(theta2(8)))/a3);
                theta4(7)=theta234(4)-theta23(7);
                theta4(8)=theta234(4)-theta23(8);
                theta3(7)=theta23(7)-theta2(7);
                theta3(8)=theta23(8)-theta2(8);
                AllSloverTheta(k+1,:)=[theta1_2 theta2(7)-p2*pi/180 theta3(7) theta4(7)-p4*pi/180 theta5_4 theta6_4];
                AllSloverTheta(k+2,:)=[theta1_2 theta2(8)-p2*pi/180 theta3(8) theta4(8)-p4*pi/180 theta5_4 theta6_4];
                k=k+2;
            end
        end
        
        if k>0
            AllSloverTheta=AllSloverTheta*180/pi;%将弧度转化成角度
            for i=1:k
                for j=1:6
                    if AllSloverTheta(i,j)<=-180
                        AllSloverTheta(i,j)=AllSloverTheta(i,j)+360;%将角度限定在-180—+180
                    elseif AllSloverTheta(i,j)>180
                        AllSloverTheta(i,j)=AllSloverTheta(i,j)-360;%将角度限定在-180—+180
                    end
                end
            end
        else 
            disp('Singular position Unable to solve');
        end
    end
end

 

你可能感兴趣的:(机械臂,矩阵,线性代数)