【用pandas_alive几行代码绘制竞赛动图】3.散点图(测试代码+数据集+绘图参数解析)

目录

    • 3.散点图
      • 散点图API说明:
      • 散点图数据集
      • 散点图例程
    • 总结


欢迎关注 『pandas_alive绘制竞赛动图』 专栏,持续更新中
欢迎关注 『pandas_alive绘制竞赛动图』 专栏,持续更新中

资源文件下载:
专栏学习说明(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)

所有效果图预览:
效果图展示(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)

环境配置:
环境配置与检测(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)


3.散点图

会出现提醒:

E:\allworkspace\python work space\Python动态图_pandas_alive\pandas_alive\charts.py:420: UserWarning: Discarding nonzero nanoseconds in conversion
  super().set_x_y_limits(self.df, i, self.ax)

在这里插入图片描述
意思是用户警告:在转换 super().set_x_y_limits(self.df, i, self.ax) 中丢弃非零纳秒,我理解应该是精度的丢失,不影响出图的。

散点图API说明:

parse_dates={“Timestamp”: [“Year”, “Month”, “Day”]}

  • 解析数据为年-月-日格式

dt.strftime(’%Y/%m/%d’)

  • 标准化这一列数据格式输出 年-月-日

kind=‘scatter’,

  • kind=“scatter”,图表类型为散点图

keep_columns = [“Minimum temperature (Degree C)”, “Maximum temperature (Degree C)”]

  • 设置图例内容

散点图数据集

Newcastle_Australia_Max_Temps.csv
Newcastle_Australia_Min_Temps.csv
数据量过大,移步码云下载数据集

https://gitee.com/miao-zehao/pandas-live-game-graph

在这里插入图片描述

散点图例程

# @Time    : 2022/1/12 19:57
# @Author  : 南黎
# @FileName: 3..py

import pandas as pd

######显示中文宋体字体导入,如果使用中文加上这段代码######
import matplotlib as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
#####################################################

import pandas as pd
import pandas_alive

max_temp_df = pd.read_csv(
    "数据源data/Newcastle_Australia_Max_Temps.csv",
    parse_dates={"Timestamp": ["Year", "Month", "Day"]},
)
min_temp_df = pd.read_csv(
    "数据源data/Newcastle_Australia_Min_Temps.csv",
    parse_dates={"Timestamp": ["Year", "Month", "Day"]},
)

merged_temp_df = pd.merge_asof(max_temp_df, min_temp_df, on="Timestamp")

merged_temp_df.index = pd.to_datetime(merged_temp_df["Timestamp"].dt.strftime('%Y/%m/%d'))

#设置图例内容
keep_columns = ["Minimum temperature (Degree C)", "Maximum temperature (Degree C)"]

merged_temp_df[keep_columns].resample("Y").mean().plot_animated(
    filename='3.散点图.gif',
    kind="scatter",#图表类型为散点图
    title='发现你走远了——3.散点图'
)

在这里插入图片描述


总结

版权声明:

发现你走远了@mzh原创作品,转载必须标注原文链接

Copyright 2022 mzh

Crated:2022-1-13

我折腾了一星期,梳理了很多入门小白避雷的方法,还会继续更新,如果看了对你有帮助,希望得到大家的点赞收藏支持!(毕竟时短间学完太难了,建议放进收藏夹吃灰

欢迎关注 『pandas_alive绘制竞赛动图』 专栏,持续更新中
欢迎关注 『pandas_alive绘制竞赛动图』 专栏,持续更新中
【一、效果图展示(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)】
【二、专栏学习说明(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)】
【三、环境配置与检测(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)】
【四、数据集说明(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)】
【五、常见问题(配置好的venv虚拟环境+拿来即用测试代码+测试数据集+参数api解析)】
【1.条形图(测试代码+数据集+绘图参数解析)】
【2.折线图(测试代码+数据集+绘图参数解析)】
【3.散点图(测试代码+数据集+绘图参数解析)】
【4.饼状图(测试代码+数据集+绘图参数解析)】
【5.气泡图(测试代码+数据集+绘图参数解析)】
【6.地理空间图(测试代码+数据集+绘图参数解析)】
【7.多个图表(测试代码+数据集+绘图参数解析)】
【8.城市人口(测试代码+数据集+绘图参数解析)】
【9.G7国家的预期寿命(测试代码+数据集+绘图参数解析)】
【10.新南威尔士州 COVID 可视化(测试代码+数据集+绘图参数解析)】
【更多内容敬请期待】


你可能感兴趣的:(#,python,tensorflow,pandas_alive,动态绘图,数据可视化)