深度学习分类模型

Halcon深度学习图像分类也是深度方向一大领域,可以用于超市商品分类识别,餐馆食品分类计价,垃圾分类等等。下面有我个人总结颜色分类代码,注释详细,需要或者想要学习halcon深度学习分类的朋友可做参考。

*分类网络
dev_update_off ()
dev_close_window ()
WindowWidth := 800
WindowHeight := 600
dev_open_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1, WindowHandle)
set_display_font (WindowHandle, 16, 'mono', 'true', 'false')
* 
* Some procedures use a random number generator. Set the seed for reproducibility.
set_system ('seed_rand', 42)

* 
* ** TRAINING **
* 
* 读取一个预先训练的网络
read_dl_classifier ('pretrained_dl_classifier_compact.hdl', DLClassifierHandle)
*获取模型需要的图片大小
get_dl_classifier_param (DLClassifierHandle, 'image_width', DlImageWidth)
get_dl_classifier_param (DLClassifierHandle, 'image_height', DlImageHeight)
*获取模型需要的图片通道数
get_dl_classifier_param (DLClassifierHandle, 'image_num_channels', DlNumChannels)
*获取模型需要的图片灰度值范围
get_dl_classifier_param (DLClassifierHandle, 'image_range_min', DlRangeMin)
get_dl_classifier_param (DLClassifierHandle, 'image_range_max', DlRangeMax)


*总路径
DataDir := 'D:/DL_PVC_PinShan/DL_ColorClassify_PVC_PinShan/'
* 带图像的目录路径(0黑色,1红色 ,2黄色,3蓝色,4其他)
RawDataFolder := DataDir + 'Image/' + ['0','1','2','3','4']
* 根据原始数据对应打上标签,参数:输入路径,方法,所有图片路径,所有图片标签,所有标签索引,标签类型
read_dl_classifier_data_set (RawDataFolder, 'last_folder', RawImageFiles, Labels, LabelIndices, Classes)
* 处理后图片存放文件夹的名称
PreprocessedFolder := DataDir + '分类检测hobj'
* false不覆盖处理后的图片
OverwritePreprocessingFolder := false
*true执行完后删除保存的图片
RemovePreprocessingAfterExample := true
* 
*将打标签的图像,并进行处理
*判断文件是否存在.
file_exists (PreprocessedFolder, FileExists)
if (not FileExists or OverwritePreprocessingFolder)
   *如果覆盖时,文件夹存在,则删除
    if (FileExists)
        remove_dir_recursively (PreprocessedFolder)
    endif
   *如果覆盖时,文件夹存在,则删除
    make_dir (PreprocessedFolder)
    for I := 0 to |Classes| - 1 by 1
        make_dir (PreprocessedFolder + '/' + Classes[I])
    endfor
   *定义待存放文件路径和名称
    *将文件名解析为目录,基本文件名和扩展名
    parse_filename (RawImageFiles, BaseNames, Extensions, Directories)
    ObjectFilesOut := PreprocessedFolder + '/' + Labels + '/' + BaseNames + '.hobj'

    * 处理输入图像并保存为.hobj格式文件
     *每个样本图才处理成224*224分辨率(224*224是当前模型中获取到的参数,也可以设置成别的分辨率)3通道、-127128亮度级图像
    DlImageWidth := 224
    DlImageHeight := 224
    DlNumChannels := 3
    DlRangeMin := -127.0
    DlRangeMax := 128.0

    for I := 0 to |RawImageFiles| - 1 by 1
        *读取样本文件
        read_image (Image,RawImageFiles[I])
             
        *将图片缩放到网络模型需求的大小
        zoom_image_size (Image, Image, DlImageWidth, DlImageHeight, 'constant')
        *将图片的灰度缩放成网络模型需求范围
        *类型转换
        convert_image_type (Image, Image, 'real')
        RescaleRange := (DlRangeMax-DlRangeMin)/255.0
        *缩放图像的灰度值
        scale_image (Image, Image, RescaleRange, DlRangeMin)
        *合成三通道图片
        *获取图片通道个数
        count_obj (Image, Number)
        for j := 1 to Number by 1    
            select_obj (Image, ObjectSelected, j)
            count_channels (ObjectSelected, Channel)
            *如果图片不是三通道图,将图片合成为三通道图
            if (Channel != DlNumChannels)
                *转换为3通道图像
                compose3 (ObjectSelected, ObjectSelected, ObjectSelected, ThreeChannel)
                *替换图元数组
                replace_obj (Image, ThreeChannel, Image, 1)
            endif
        endfor
        *并写入文件
        write_object (Image, ObjectFilesOut[I])
        dev_disp_preprocessing_progress (I, RawImageFiles, PreprocessedFolder, WindowHandle)
    endfor
    dev_clear_window ()
    dev_disp_text ('Preprocessing done.', 'window', 'top', 'left', 'black', [], [])
endif
* 
*将数据分为 训练集,验证集,测试集
*读取处理后的数据
read_dl_classifier_data_set (PreprocessedFolder, 'last_folder', ImageFiles, Labels, LabelsIndices, Classes)
* 
*将数据分为三个子集,训练集占:70%、验证集占:15%、测试集占:15%
TrainingPercent := 70
ValidationPercent := 15
*将数据拆分 参数:输入图像路径、输入的标签、训练%,验证%、返回用于训练的图像、返会用于训练图像的标签、返回用于验证的图像、返会用于验证图像的标签、返回用于测试的图像、返会用于测试图像的标签
split_dl_classifier_data_set (ImageFiles, Labels, TrainingPercent, ValidationPercent, TrainingImages, TrainingLabels, ValidationImages, ValidationLabels, TestImages, TestLabels)
* 
*设置分类模型训练参数
*设置分类模型类名
set_dl_classifier_param (DLClassifierHandle, 'classes', Classes)
*设置分类模型训练批处理数
BatchSize := 25
set_dl_classifier_param (DLClassifierHandle, 'batch_size', BatchSize)
Momentum := 0.9
set_dl_classifier_param (DLClassifierHandle, 'momentum', Momentum)
WeightPrior := 0.0005
set_dl_classifier_param (DLClassifierHandle, 'weight_prior', WeightPrior)

*设置运行环境(有可能halcon18训练需要gpu,运行可以cpu)
try
    set_dl_classifier_param (DLClassifierHandle, 'runtime_init', 'immediately')
catch (Exception)
    dev_disp_error_text (Exception)
    if (RemovePreprocessingAfterExample and Exception[0] != 4104)
        remove_dir_recursively (PreprocessedFolder)
        dev_disp_text ('Preprocessed data in folder "' + PreprocessedFolder + '" have been deleted.', 'window', 'bottom', 'left', 'black', [], [])
    endif
    stop ()
endtry
*对于该数据集,初始学习率为0.001
*已被证明产生了良好的效果。
InitialLearningRate := 0.001
set_dl_classifier_param (DLClassifierHandle, 'learning_rate', InitialLearningRate)
*30次根据下降因子更新学习率
LearningRateStepEveryNthEpoch := 30
LearningRateStepRatio := 0.1
*迭代次数
NumEpochs := 120
* 
* 训练模型
* 
dev_clear_window ()
dev_disp_text ('Training has started...', 'window', 'top', 'left', 'black', [], [])
*每迭代4次绘制一下图
PlotEveryNthEpoch := 1
*训练好的分类网络模型名称和保存路径
FileName := DataDir + 'classifier_color_PVCPinShan.hdl'
*训练
train_fruit_classifier (DLClassifierHandle, FileName, NumEpochs, TrainingImages, TrainingLabels, ValidationImages, ValidationLabels, LearningRateStepEveryNthEpoch, LearningRateStepRatio, PlotEveryNthEpoch, WindowHandle)
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
stop ()




*验证
*加载训练好的网络模型
read_dl_classifier (FileName, DLClassifierHandle)
* 
* 计算验证数据集的混淆矩阵
get_predicted_classes (ValidationImages, DLClassifierHandle, PredictedClassesValidation)
*生成混淆矩阵模型
gen_confusion_matrix (ValidationLabels, PredictedClassesValidation, [], [], WindowHandle, ConfusionMatrix)
dev_disp_text ('Validation data', 'window', 'top', 'left', 'gray', 'box', 'false')
dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
stop ()
dev_clear_window ()
* 
* ** INFERENCE **
* 
*测试
*加载训练好的网络模型
read_dl_classifier (FileName, DLClassifierHandle)
*设置单张图片测试
set_dl_classifier_param (DLClassifierHandle, 'batch_size', 1)
*测试是否可以在CPU环境下运行
try
    set_dl_classifier_param (DLClassifierHandle, 'runtime', 'cpu')
    Runtime := 'cpu'
catch (Exception)
    * Keep the 'gpu' runtime if switching to 'cpu' failed.
    Runtime := 'gpu'
endtry
*立即初始化运行时环境
set_dl_classifier_param (DLClassifierHandle, 'runtime_init', 'immediately')
* 
dev_resize_window_fit_size (0, 0, WindowWidth, WindowHeight, -1, -1)
dev_disp_inference_text (Runtime)
stop ()

 *每个样本图才处理成224*224分辨率(也可以设置成别的分辨率)3通道、-127128亮度级图像
DlImageWidth := 224
DlImageHeight := 224
DlNumChannels := 3
DlRangeMin := -127.0
DlRangeMax := 128.0


for Index := 0 to 20 by 1
    ImageFile := RawImageFiles[floor(rand(1) * |RawImageFiles|)]
    read_image (Image, ImageFile)
   *将图片缩放到网络模型需求的大小
    zoom_image_size (Image, Image, DlImageWidth, DlImageHeight, 'constant')
    dev_resize_window_fit_image (Image, 0, 0, -1, -1)
    *将图片的灰度缩放成网络模型需求范围
   *类型转换
    convert_image_type (Image, Image, 'real')
    RescaleRange := (DlRangeMax-DlRangeMin)/255.0
    *缩放图像的灰度值
    scale_image (Image, Image, RescaleRange, DlRangeMin)
    *合成三通道图片
    *获取图片通道个数
    count_channels (Image, Channel)
    *如果图片不是三通道图,将图片合成为三通道图
    if (Channel != DlNumChannels)
        *转换为3通道图像
        compose3 (Image, Image, Image, ThreeChannel)
        *替换图元数组
        replace_obj (Image, ThreeChannel, Image, 1)
    endif

    
    *使用已经训练好的深度学习网络识别图像  参数:输入图像、分类器的句柄、分类的结果
    apply_dl_classifier (Image, DLClassifierHandle, DLClassifierResultHandle)
    *获取识别结果  参数:分类的结果,批处理中图像的索引,通用参数的名称,通用参数的值
    get_dl_classifier_result (DLClassifierResultHandle, 'all', 'predicted_classes', PredictedClass)
    get_dl_classifier_result (DLClassifierResultHandle, 'all', 'confidences', Confidences)
    get_dl_classifier_result (DLClassifierResultHandle, 'all', 'predicted_class_indices', PredictedClassIndices)
    * 
    dev_display (Image)
    Text := '预测类为: ' + PredictedClass + ' 置信度:' + Confidences 
    dev_disp_text (Text, 'window', 'top', 'left', 'white', 'box', 'false')
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
    stop ()
endfor
stop ()
if (RemovePreprocessingAfterExample)
    remove_dir_recursively (PreprocessedFolder)
    dev_disp_text ('End of program.\nPreprocessed data have been deleted.', 'window', 'bottom', 'right', 'black', [], [])
else
    dev_disp_text ('      End of program      ', 'window', 'bottom', 'right', 'black', [], [])
endif

你可能感兴趣的:(人工智能,c++,深度学习,图像处理)