- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- ICBDDM2025:大数据与数字化管理前沿峰会
鸭鸭鸭进京赶烤
学术会议大数据图像处理计算机视觉AI编程人工智能机器人考研
在选择大学专业时,可以先从自身兴趣、能力和职业规划出发,初步确定几个感兴趣的领域。然后结合外部环境因素,如专业前景、教育资源和就业情况等,对这些专业进行深入的分析和比较。大数据专业:是一个热门且前沿的学科领域,它涉及到数据的收集、存储、处理、分析和应用等多个方面。课程设置基础课程数学基础:高等数学、线性代数、概率论与数理统计等。这些课程为大数据分析提供了必要的数学工具,例如线性代数在机器学习算法中
- 第九课:大白话教你朴素贝叶斯
顽强卖力
机器学习-深度学习-神经网络算法python大数据数据分析
这节课咱们来聊聊朴素贝叶斯(NaiveBayes),这个算法名字听起来像是个“天真无邪的数学小天才”,但其实它是个超级实用的分类工具!我会用最接地气的方式,从定义讲到代码实战,保证你笑着学会,还能拿去忽悠朋友!一:朴素贝叶斯是啥?——当概率论遇上“天真”假设1.1定义:贝叶斯定理的“偷懒版”问题:你想判断一封邮件是不是垃圾邮件,或者一条评论是不是好评。贝叶斯定理(原版):[P(A|B)=\frac
- 贝叶斯算法:从概率推断到智能决策的基石
weixin_47233946
算法算法
##引言在人工智能与机器学习的蓬勃发展中,贝叶斯算法以其独特的概率推理方式和动态更新的特性,在垃圾邮件过滤、疾病诊断、推荐系统等关键领域展现出强大的应用价值。本文将从概率论基础出发,深入解析贝叶斯算法的核心思想及其实现方式,揭示这一统计学方法如何演变为现代智能系统的决策利器。---##一、贝叶斯定理:概率之门的钥匙###1.1基本公式表述贝叶斯定理的数学表达式揭示事件间的关联关系:$$P(A|B)
- 清风数学建模个人笔记--模糊综合评价
fvdj0
数学建模笔记
目录一、量二、分类三、模糊函数的三种表示方法四、应用:模糊综合评价(评判)一、量①确定性:经典数学(几何、代数)②不确定性:随机性(概率论、随机过程)灰性(灰色系统)模糊性(模糊数学)二、分类:偏小型:年轻、小、冷中间型:中年、中、暖偏大型:年老、大、热三、模糊函数的三种表示方法(1)模糊统计法(设计调查问卷,不推荐,主观性最弱)(2)借助已有的尺度(需要已有的指标,并能收集到数据)论域模糊集隶属
- 【西瓜书】机器学习(周志华)学习问题记录
_linyu__
基础知识机器学习周志华西瓜书
简述西瓜书的鼎鼎大名早有耳闻,于是毫无疑问买来入门。写此文章的时候刚要做完第二章的练习题。在看的时候有一些感慨:需要一定的数理基础,尤其是概率论的内容。但是如果没学过也不建议直接去啃概率论,只要把相关的部分看看即可。周老师默认我们能力很强,所以有些地方说得不够详细,仅靠此书无法理解,需要自己另行查阅。有一些疑似谬误的地方,但是我自己能力较差,又苦于没有人佐证,所以并不敢说周老师一定错了。在看的过程
- 数学中的泛函分析与算子理论
AI天才研究院
计算AI大模型应用入门实战与进阶ChatGPT实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1数学的发展与泛函分析的产生数学作为一门科学,自古以来就在不断地发展和演变。从最初的算术、几何,到后来的微积分、线性代数,再到现代的拓扑学、概率论等,数学的研究领域不断扩展。泛函分析作为一门现代数学的分支,起源于20世纪初,它主要研究无限维空间中的函数和算子,为许多现代科学和工程问题提供了理论基础。1.2泛函分析与算子理论的关系泛函分析与算子理论密切相关。泛函分析主要研究无限维空间
- 【图像处理入门】8. 数学基础与优化:线性代数、概率与算法调优实战
小米玄戒Andrew
图像处理:从入门到专家图像处理线性代数算法python计算机视觉概率论算法调优
摘要图像处理的核心离不开数学工具的支撑。本文将深入解析线性代数、概率论在图像领域的应用,包括矩阵变换与图像几何操作的关系、噪声模型的数学描述,以及遗传算法、粒子群优化等智能算法在参数调优中的实践。通过理论结合代码案例,帮助读者掌握从数学原理到工程优化的完整链路。一、线性代数:图像变换的数学基石1.矩阵运算与图像几何变换在图像处理入门3中,我们通过仿射变换矩阵实现图像平移、旋转与缩放。其本质是线性代
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- (十七)深度学习之线性代数:核心概念与应用解析
只有左边一个小酒窝
深度学习深度学习线性代数人工智能
1线性代数在深度学习中的定位1.1深度学习的数学基础支柱线性代数是深度学习的核心数学工具之一,与微积分、概率论共同构成深度学习的理论基础。深度学习本质上是对高维数据的处理与建模,而线性代数提供了描述和操作高维空间中数据与变换的语言和方法。1.2从数据表示到模型运算的桥梁数据结构化表示:深度学习处理的图像、文本、音频等数据,通常被转化为向量、矩阵或张量(多维数组)。例如:图像:RGB图像可表示为三维
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 贝叶斯原理:解锁不确定性的智慧钥匙(全网最详细)
富士达幸运星
贝叶斯原理人工智能机器学习
在浩瀚的统计学与概率论海洋中,贝叶斯原理如同一盏明灯,照亮了我们在不确定性中前行的道路。它不仅仅是一种计算方法,更是一种深刻的思维方式,让我们能够基于有限的信息和先验知识,对未知事件做出更加合理的预测和判断。本文将带您一窥贝叶斯原理的奥秘,探索它如何在各个领域发光发热。一、贝叶斯原理的起源与核心概念起源贝叶斯原理得名于18世纪的英国数学家托马斯·贝叶斯(ThomasBayes),尽管他本人并未直接
- 为什么计算机不用e进制,按道理说e进制难道不是最高效的吗?e进制理论上为何被认为信息编码更优,但实际却难以实现?
前端
在现代计算机科学中,二进制无疑是计算机体系结构的根基,这一选择深刻影响了计算机的设计、性能以及发展方向。然而,数字系统的底层进制理论却远远不止二进制一种可能性。从数学的角度来看,常用进制中有一个特殊的数——数学常数e(自然对数的底,约等于2.71828),它在无数数学和物理领域扮演着极其重要的角色。e的独特性质使得很多数学函数的表达变得简洁自然,且e在连续复利、概率论、信息论等领域都有着独特的优势
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 【概率论与数理统计】第二章 随机变量及其分布(1)
Arthur古德曼
概率论与数理统计概率论随机变量分布离散型连续型夏明亮
第二章随机变量及其分布第一章种学习了随机现象、随机试验、随机事件等概念,讨论了随机事件的关系、运算以及概率;且只考虑了个别事件下的频率问题。接下来,进一步第需要建立随机试验结果与实数的对应关系,这类似于函数的映射,我们称之为随机变量,以便使用高等数学的方法来研究随机试验。1离散型随机变量1.1随机变量的概念随机变量的数学定义:**定义1:**设EEE为随机试验,Ω\OmegaΩ为其样本空间,若对于
- 随机变量及其分布:概率论的量化核心
Algo-hx
概率论与数理统计概率论
标题引言2随机变量及其分布2.1随机变量定义与分类2.2离散型随机变量:概率质量函数(PMF)概率分布律性质经典分布4.**各分布之间的关系**2.3分布函数(CDF):统一描述工具定义性质离散型应用2.4连续型随机变量:概率密度函数(PDF)定义性质经典分布均匀分布指数分布正态分布2.5随机变量函数的分布问题:已知XXX分布,求Y=g(X)Y=g(X)Y=g(X)分布解法框架重要公式(当ggg严
- 詹森不等式(Jensen’s Inequality)——EM算法的基础
phoenix@Capricornus
模式识别中的数学问题机器学习
詹森不等式(Jensen’sInequality)是数学中一个非常重要的不等式,广泛应用于概率论、统计学、凸优化、信息论等领域。它基于凸函数和凹函数的性质。一、基本定义设函数fff是定义在区间III上的凸函数(convexfunction),且随机变量XXX的取值落在III内,期望存在,则有:E[f(X)]⩾f(E[X]){E}[f(X)]\geqslantf({E}[X])E[f(X)]⩾f(E
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- Python概率论
麻辣小兔喵
Pythonpython概率论机器学习
概率论是数学的一个分支,它研究随机事件的概率和统计规律。在Python中,有很多强大的概率统计库可以帮助我们进行概率计算和数据分析,比如NumPy、SciPy和Pandas等库。下面我将为您介绍一些基本的概率概念以及如何在Python中实现它们。1.概率的基本概念在概率论中,我们通常会用以下的符号表示:P(A):表示事件A发生的概率,其取值范围在[0,1]之间。P(A|B):表示在事件B发生的条件
- C++概率论算法详解:理论基础与实践应用
清言神力,创作奇迹。接受福利,做篇笔记。参考资料[0]概率论中均值、方差、标准差介绍及C++/OpenCV/Eigen的三种实现.https://blog.csdn.net/fengbingchun/article/details/73323475.[4]C++中的随机数及其在算法竞赛中的使用-博客园.https://www.cnblogs.com/cmy-blog/p/random.html.[
- 我2025上岸大模型就靠它了,冲击大厂大模型岗位!大模型学习路线(2025最新)从零基础入门到精通_大模型学习路线
大模型老炮
学习人工智能程序员Agent大模型教学知识库大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。\1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcad
- 神仙级大模型教程分享,不用感谢,请叫我活雷锋!大模型 学习路线非常详细_大模型学习路线(2025最新)
程序员辣条
学习人工智能大模型产品经理智能体大模型教程AI大模型
大模型学习路线图第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRoss,《概率论与随机过程》在线课程:KhanAcade
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
江湖小妞
概率论
最大似然估计与最小二乘估计的区别标签(空格分隔):概率论与数理统计最小二乘估计对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小。设Q表示平方误差,Yi表示估计值,Ŷi表示观测值,即Q=∑ni=1(Yi−Ŷi)2最大似然估计对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概率分布函数或者
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- 【概率论基本概念01】点估计
无水先生
概率模型统计学模型概率论
一、说明关于概率和统计的学习,需要从根本上、原始概念中一点一点积累,这些基本概念的头绪特别多,一次性交待它们的面有困难,我们只能从点上入手,将点与点的关系连成面,最后完成系统学习的目的,这是一个长期任务。二、关于估计的基本概念2.1我们将学习哪些关于“估计”内容我们将主要指向如下学习内容:学习如何找到总体参数的最大似然估计量。学习如何找到总体参数的矩估计方法。学习如何检查估计量对于特定参数是否无偏
- 《算法导论(第4版)》阅读笔记:p1178-p1212
算法
《算法导论(第4版)》学习第25天,p1178-p1212总结,总计35页。一、技术总结1.AppendixC:CountingandProbability附录C介绍了计数理论(如:和规则,积规则,串,排列,组合,二项式系数,二项式界等),概率理论(如:样本空间,事件,概率论公理,离散概率分布,连续均匀概率分布,贝叶斯定理等),几何分布与二项分布,二项分布的尾部探究。第5章会时不时的涉及这些内容,
- matlab实现朴素贝叶斯可视化,模式识别(七):MATLAB 实现朴素贝叶斯分类器
哈哈哈哈哈哈哈哈鸽
本系列文章由云端暮雪编辑,转载请注明出处多谢合作!基础介绍今天介绍一种简单高效的分类器——朴素贝叶斯分类器(NaiveBayesClassifier)。相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”:贝叶斯分类器就是基于这条公式发展起来的,之所以这里还加上了朴素二字,是因为该分类器对各类的分布做了一个假设,即不同类的数
- C++二项式定理:原理、实现与应用
VU-zFaith870
数学c++二项式定理数学
背景鉴于复习,问了问清言二项式定理的应用…只好多找些资源…肝要死了…一、引言二项式定理是数学中一个基本定理,主要用于展开二项式的幂次。在C++编程中,理解并实现二项式定理及其拓展具有重要意义,可以解决组合数学、概率论、算法分析等多个领域的问题。本报告将详细介绍C++二项式定理的原理、实现方法及其拓展应用。二、二项式定理的基本原理二项式定理描述了如何展开(a+b)^n的形式,其中n为非负整数。展开式
- LLM笔记(五)概率论
Jerry3538
LLM学习笔记概率论人工智能
1.随机变量与概率分布:模型输出的基础在LLM中,随机变量最直观的体现就是模型预测的下一个token。每个时刻,模型都会输出一个概率分布,表示词汇表中每个token可能是"下一个词"的概率。直观理解想象模型在处理句子"我喜欢北京的"后需要预测下一个词。此时,模型会为词汇表中的每个候选token分配一个概率:“天安门”:0.3“故宫”:0.25“美食”:0.2“文化”:0.15其他词:0.1这个分布
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc