浅谈人工智能时代下的工程伦理问题

浅谈人工智能时代下的工程伦理问题

一、引言

近年来,随着大数据基础设施建设以及人工智能技术的发展,社会中涌现出许多新技术,给人们带来更便捷的生活。但与其共生的道德风险问题也日益显著。人工智能道德风险即人工智能技术带来的伦理结果的不确定性,其既有主观因素也有客观因素,具体表现有道德算法风险、道德决策风险、隐私数据泄露风险等。风险主要成因有技术主体、政治、经济、文化等社会因素。结合当下大数据驱动的人工智能算法特点,如何运用风险治理思想分析其背后的工程伦理问题对人工智能领域发展具有重要意义。

二、人工智能时代的当下

在1956年达特茅会议中AI这个概念被提出,经历数次低谷与发展浪潮,人工智能再次活跃在大众的视野中,并且以更完备的生态以及更强的活力积极改变我们的生活。在如今的人工智能浪潮中,深度学习因为其能够胜任更复杂、更庞大的场景而成为主流。

在AI的应用层面,随着大数据基础设施建设的日趋完备,人工智能孕育出许多产业,如:数据挖掘、人脸识别、语音识别、自动驾驶等。同时医疗卫生、交通运输、仓储物流、游戏等行业都已经或正在接受人工智能的优化。

2019年11月11日24时整,“双11”全天的物流订单量达到创纪录的12.92亿元,物流订单量迎来了“爆炸式”的增长。“双11”全天各邮政、快递企业共处理5.35亿快件,是二季度以来日常处理量的3倍,同比增长28.6%,再创历史新高。而在其背后做支撑的是一套完整的基于大数据的人工智能系统。

目前,百度、阿里、腾讯、谷歌等主流互联网公司正在大力投资人工智能相关产业与技术,而与此同时全球正有上千家公司全力押注人工智能,并且这个趋势依旧保持稳定增长的速度。

三、人工智能伦理问题日益凸显

显然,在当下这个人工智能技术飞速发展的时代,人工智能技术的广泛应用为人类带来了显而易见的好处。但技术的进步不但扩大了人类对于技术的恐慌,同时也放大了由于某些技术缺陷和忽略道德伦理问题而带来的负面影响。

3.1 忽略伦理问题下产生的算法歧视问题

外卖作为当下快节奏生活的必需品,在其背后做支撑的是数以百万的外卖员和强大的人工智能系统。2020年9月8日,一篇名为《外卖骑手,困在系统里》的文章在互联网上被热议,文章指出:2016至2019年间,美团多次向配送站站长发送加速通知,3公里的送餐距离最长时限一再被缩短至38分钟;而根据相关数据显示,2019年中国全行业外卖订单单均配送时间较3年前减少了10分钟。外卖骑手在系统算法与数据的驱动下疲于奔命,逐渐变成高危职业——骑手为在算法规定的最长送餐时限内完成送餐任务无视交通规则,不断提高车速。

许多伦理问题都是由于实践主体缺乏必要的伦理意识造成的,而外卖平台算法使得外卖骑手被“困在系统里”显然是工程的决策者以及管理者没有考虑相关的伦理问题所导致的。外卖平台作为一项服务消费者、向社会提供就业岗位的工程,其目的与其他类型的工程类似,均为满足人类在某方面的需求,但工程在向社会提供服务的同时不应当忽略工程风险问题。

3.2 从风险与安全角度分析外卖平台

工程风险的防范与安全分为工程的质量监理与安全、意外风险控制与安全和事故应急处置与安全三个方面,分析外卖平台的工程风险主要从意外风险控制和事故应急处置两方面展开。

3.2.1 意外风险控制维度的工程风险

外卖平台作为服务大众的工程项目,其受众人数巨大——外卖市场规模超6500亿元,覆盖4.6亿消费者,工程一旦出现意外风险控制不当的情况则对其受众造成无法估量的损失。在基于大数据的人工智能算法的训练过程中,算法训练结果会随着数据重心的整体偏移,从而导致外卖骑手不得不加快派送的速度进而风险增加。因此,为避免人工智能系统追求极致地无限制缩短派送最长时限,工程师和程序设计者在程序设计之初应当添加阈值以保证外卖平台背后的外卖骑手能够在遵守交通规则的前提下及时、安全地完成任务。

3.2.2 事故应急处置维度的工程风险

事故应急处理体现着工程负责人、相关利益反对工程的理解程度。应对工程事故,应当事先准备一套完整的事故应急预案,保证迅速、有序地开展应急与救援行动,降低人员伤亡和经济损失。外卖骑手因忽视交通规则造成伤亡的事件并非最近才发生——2017年上半年,上海市公安局交警总队数据显示,在上海,平均每2.5天就有1名外卖骑手伤亡。同年,深圳3个月内外卖骑手伤亡12人。2018年,成都交警7个月间查处骑手违法近万次,事故196件,伤亡155人次,平均每天就有1个骑手因违法伤亡。2018年9月,广州交警查处外卖骑手交通违法近2000宗,美团占一半,饿了么排第二。而外卖平台除口头告诫骑手之外并没有推出从根本处解决问题的措施,直到《人物》发表《外卖骑手,困在系统里》一文后外卖平台才相继推出多等5分钟的政策。

3.3 从工程四要素角度分析外卖平台

工程包括技术要素、利益要素、责任要素、环境要素以及伦理要素,接下来将从工程四要素中的技术、利益与责任这三个方面来展开。

3.3.1 技术维度的道德风险

基于算法和大数据的人工智能技术背后隐藏着风险。算法体现着工程师和程序设计者的思想,其政治立场和社会偏见都会不可避免的嵌入程序中。从大数据中诞生的人工智能系统通常会存在基于数据采样偏差带来的问题,而这类问题在后续的训练中不会被消除甚至可能被放大。因此,为消除算法与数据采用带来的偏见,工程师以及程序设计者在程序设计之初就应当消除主观偏见;同时在数据的处理方法中,应当极尽全力保证数据的准确,降低数据偏差带来的风险。

3.3.2 利益维度的道德问题

人工智能存在威胁、侵犯人类利益的风险。从安全角度来说,人工智能应当对人类来说是安全的、可靠的、不作恶的。以外卖平台派单系统为例,外卖骑手在系统的算法歧视下被迫忽视交通规则,对骑手、对行人已经构成严重的安全隐患。因此,如何通过人工智能系统,在权衡各方利益、兼顾效率、保证安全的前提下实现利益最大化是人工智能系统需要解决的核心问题。

3.3.3 责任维度的道德风险

人工智能在价值选择困境与责任承担困境中存在风险。外卖平台派单系统在消费者对于外卖的时间要求与外卖骑手在派送过程中的风险问题之间面临抉择,系统应当尽量满足消费者的需求而忽视外卖骑手的安全,还是应当在尽量保护骑手的安全的前提下提高派送效率?在人工智能系统作为自主行为主体的情况下,系统会逐渐压缩骑手的安全空间。而在发生事故之后的责任鉴定中,系统并没有能力为自己的决策承担其相应的责任。

四、总结

为避免人工智能出现无节制的追求极致从而导致技术、利益、责任等方面的道德风险,实现人类社会可持续发展的目标,人工智能的设计应当秉承着将人类健康、安全和福祉放在首位的原则。由外卖平台人工智能系统这一例所引发出来的思考,进一步提出以下建议:

1、工程设计之初应当强化工程负责人、管理者、工程师以及程序设计者的伦理意识。由于算法、工程体现着设计人员的思想,而相关人员对伦理方面的意识缺失必将导致缺乏伦理思想的工程存在缺陷。

2、强化工程相关人员的风险与安全意识。风险与安全始终是工程无法逃避的问题,针对风险可接受性进行完备分析与评估,并对一系列不可控意外风险制定相关预警机制与应急机制是控制风险、规避风险、妥当处理事故的唯一途径。

3、强化人类主导和监督能力。人类主导以及人为监督有助于人工智能系统不会走向极端,从而出现逻辑上无比正确却存在人类伦理问题的缺陷。

4、明确人工智能系统的责任归属。程序设计之初应当对程序设计者针对不同模块的设计明确责任归属,当下人工智能的发展远远没有达到成熟阶段,相应的人工智能系统也没有能力对其发展的不良后果负责,这个责任很自然的需要其背后的软件工程师、程序设计者、工程负责人以及管理者共同承担;人工智能系统在设计阶段明确责任归属有利于工程事故发生之后的责任归属划分;有利于在程序设计阶段强化工程师们的工程伦理意识。

从技术发展的角度来看,人工智能系统因其发展历史较短、技术成熟度低等原因远未达到可以完全信赖的地步。 人工智能系统在设计中应考虑预防性安全措施来防范风险,减少不可接受的伤害。

你可能感兴趣的:(其他,论文,工程伦理)