- 用 PyTorch/TensorFlow 搭建简单全连接神经网络
gs80140
AIpytorchtensorflow神经网络
目录用PyTorch/TensorFlow搭建简单全连接神经网络网络结构概述1.使用PyTorch构建网络2.使用TensorFlow构建网络总结用PyTorch/TensorFlow搭建简单全连接神经网络在本篇博客中,我们将介绍如何使用两大深度学习框架——PyTorch和TensorFlow,构建一个简单的全连接神经网络。该网络包含输入层、一个隐藏层和输出层,适合初学者理解神经网络的基本构建模块
- 用于训练基于pytorch构建的小型字符级语言模型的数据集汇总
搏博
大模型pytorch语言模型人工智能python学习机器学习
前文,我们从零开始基于transformer框架在pytorch上构建一个小型字符级语言模型,并编写了完整的python示例,模型是需要训练的,所以在原有代码的基础上,我们寻找一些公开的数据集对模型进行训练。本文需要先了解的前置内容以及代码(如果不训练,仅看如何获取数据集,就可以跳过这部分),可以看的我文章:从零开始构建一个小型字符级语言模型的完整详细教程(基于Transformer架构)-CSD
- 扣子和DIfy调用deepseek对比分析
ISDF-CodeInkVotex
人工智能+科技前沿杂谈人工智能
近日,与网络高人学习,用Coze调用deepseek火山引擎版满血R1大模型,可以构建自己的业务级智能体,觉得还挺好玩的。又闻言,Dify、TensorFlow、PyTorch、Keras、Fastai、HuggingFace等工具可以微调诸如deepseek、chatgpt、doubao等大模型。下面重点讲Dify和Coze在调用deepseek上的区别做一个简要分析,供个人认知扫盲。1.调用方
- 基于 YOLO 进行车道线检测与目标检测算法研究及开发的一般步骤
pk_xz123456
python算法深度学习YOLO目标检测算法
基于深度学习的车道线检测与目标检测在自动驾驶等领域有着重要应用,使用YOLO(YouOnlyLookOnce)进行开发是一种常见且高效的方式。以下是关于基于YOLO进行车道线检测与目标检测算法研究及开发的一般步骤和相关内容:1.环境搭建首先确保你的开发环境安装了必要的软件和库,推荐使用Python语言,以下是一些关键库:PyTorch:YOLO通常基于PyTorch实现,安装适合你系统的PyTor
- 安装CUDA以及GPU版本的pytorch
lskkkkkkkkkkkk
Pythonpytorch人工智能python
使用pytorch进行深度学习的时候,往往想用GPU进行运算来提高速度。于是搜索便知道了CUDA。下面给出一个自检的建议:检查cuda的版本是否适配自己的GPU。打开NVDIA控制面板,点击左下角“系统信息”,然后就可以看到NVDIAGPU的详细信息,其中就包含了CUDA的版本。在官网安装合适版本的cuda-toolkit。安装了cuda,但是命令行输入nvcc-V报错显示没有nvcc这时候可能没
- 如何将 DeepSeek 模型与 PyTorch结合使用
LCG元
大模型pytorch人工智能python
目录环境准备系统要求安装PyCharm下载DeepSeek模型使用Ollama下载模型验证模型下载本地部署DeepSeek模型使用Flask创建HTTP服务使用PyCharm调用本地服务进一步集成到开发流程封装函数自定义快捷键(可选)✍️相关问答DeepSeek模型与PyTorch结合使用的性能优化策略有哪些如何在PyCharm中设置自定义快捷键来快速调用DeepSeek服务DeepSeek模型的
- Windows 系统下,使用 PyTorch 的 DataLoader 时,如果 num_workers 参数设置为大于 0 的值,报错
张三不嚣张
pytorch人工智能python
在Windows系统下,使用PyTorch的DataLoader时,如果num_workers参数设置为大于0的值,可能会遇到以下错误:RuntimeError:Anattempthasbeenmadetostartanewprocessbeforethecurrentprocesshasfinisheditsbootstrappingphase.Thisprobablymeansthatyoua
- 从零开始:使用PyTorch构建DeepSeek R1模型及其训练详解
陆鳐LuLu
pytorch人工智能python
本文将引导你使用PyTorch从零开始构建DeepSeekR1模型,并详细解释模型架构和训练步骤。DeepSeekR1是一个假设的模型名称,为了演示目的,我们将构建一个基于Transformer的简单文本生成模型。1.模型架构DeepSeekR1的核心是一个基于Transformer的编码器-解码器架构,包含以下关键组件:EmbeddingLayer:将输入的单词索引转换为密集向量表示。Posit
- pytorch PIL对np和tensor 图像数据的显示
Tianwen_Burning
pytorch深度学习pytorchpython
(显示图像)PIL可以显示np的图像数据,np是whc的格式。在np转换为tenser格式后会自动转换为cWH的格式,tenser再转回来时,依然是cwh格式np.tranpose(1,2,0)可以将cwh格式转换为whc的格式,也就是将原来的0,1,2代表的cwh,变成whc格式代码表示是====互转的代码“tensor_a=torch.tensor(array),np_array=tensor
- IPEX-LLM: 英特尔硬件大语言模型加速库部署
Felix_bin
语言模型人工智能自然语言处理
IPEX-LLM:英特尔硬件大语言模型加速库部署大语言模型的本地部署正成为一个热门话题。本指南将帮助你掌握如何使用IPEX-LLM(IntelPyTorchExtensionforLargeLanguageModels)在英特尔硬件上实现最优化的模型部署。无论你是刚开始接触还是已经有一定经验,这份指南都能满足你的需求。IPEX-LLM的优势IPEX-LLM是英特尔基于PyTorch开发的专业优化库
- 在Intel GPU上使用IPEX-LLM进行本地BGE嵌入
shuoac
python
在现代人工智能应用中,尤其在诸如检索增强生成(RAG)和文档问答等任务中,低延迟是一个至关重要的指标。Intel的IPEX-LLM是一种专门为IntelCPU和GPU优化的PyTorch库,能够在包括本地PC上的集成显卡和独立显卡(如Arc、Flex和Max)在内的Intel硬件上以极低的延迟运行大型语言模型(LLM)。本文将介绍如何在IntelGPU上结合LangChain使用IPEX-LLM进
- 训练神经网络出现nan
崧小果
AI学习记录神经网络深度学习机器学习
在理解和修改QARV的代码时,出现了训练会因为nan而终止的问题,因此学习记录。参考资料Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因Pytorch训练模型损失Loss为Nan或者无穷大(INF)原因_pytorchnan-CSDN博客文章浏览阅读5.6w次,点赞135次,收藏489次。常见原因-1一般来说,出现NaN有以下几种情况:相信很多人都遇到过训练一个deepmodel
- Pytorch(5): LeNet,ResNet,RNN,LSTM代码
weixin_51182518
rnn卷积深度学习python
1、LeNet5与ResNet18实战第一部分:LeNet5代码:importtorchfromtorchimportnnfromtorch.nnimportfunctionalasFclassLenet5(nn.Module):def__init__(self):super(Lenet5,self).__init__()self.conv_unit=nn.Sequential(nn.Conv2d
- 【深度学习】PYTORCH框架中采用训练数据“CIFAR-10”实现RESNET50
别出BUG求求了
深度学习深度学习pytorchcifar-10resnet50神经网络
一、ResNet网络结构二、基本块三、RESNET50代码实现resnet50.pyimporttorchimporttorch.nnasnnfromtorch.nnimportfunctionalasFclassResNet50BasicBlock(nn.Module):def__init__(self,in_channel,outs,kernerl_size,stride,padding):s
- Python常见库的使用
浪子西科
Pythonpython开发语言
文章目录人工智能与机器学习1.NumPy2.Pandas3.Scikit-learn4.TensorFlow5.PyTorch数据可视化1.Matplotlib2.Seaborn网络请求与爬虫1.Requests2.Scrapy自动化测试1.unittest2.pytest自然语言处理1.NLTK2.SpaCy数据库操作1.SQLite32.SQLAlchemy日期和时间处理1.datetime2
- flash_attn安装
壶小旭
PythonLinuxpython
flash_attn安装1.cuda-nvcc安装https://anaconda.org/nvidia/cuda-nvcc2.torch安装#https://pytorch.org/#找到对应cuda版本的torch进行安装pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1213
- 在PyTorch中使用插值法来优化卷积神经网络(CNN)所需硬件资源
mosquito_lover1
pytorchcnn人工智能
插值法其实就是在已知数据点之间估计未知点的值。通过已知的离散数据点,构造一个连续的曲线函数,预测数据点之间的空缺值是什么并且自动填补上去。适用场景:在卷积神经网络(CNN)中的应用场景中,经常遇到计算资源有限,比如显存不够或者处理速度慢,需要用插值来降低计算量。使用插值法的优点:物理系统的数据通常是连续的,使用插值法可以保持数据的连续性直接截取可能会丢失重要的动态特征,使用插值法不会丢失重要信息可
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- Pytorch:以CIFAR-10分类为例,给出了神经网络的训练流程
Xiao_Ya__
深度学习pytorchpytorch分类神经网络
下面给出了神经网络的训练流程,包括数据加载与预处理、网络定义、损失函数和优化器定义、网络训练和网络测试。importtorchastimporttorchvisionastvimporttorchvision.transformsastransformsfromtorchvision.transformsimportToPILImageimporttorch.nnasnnimporttorch.n
- [C++]使用纯opencv部署yolov12目标检测onnx模型
FL1623863129
深度学习c++opencvYOLO
yolov12官方框架:sunsmarterjie/yolov12【算法介绍】在C++中使用纯OpenCV部署YOLOv12进行目标检测是一项具有挑战性的任务,因为YOLOv12通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,你可以通过一些间接的方法来实现这一目标,比如将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN
- 【PyTorch 实战2:UNet 分割模型】10min揭秘 UNet 分割网络如何工作以及pytorch代码实现(详细代码实现)
xiaoh_7
pytorch网络图像处理计算机视觉
UNet网络详解及PyTorch实现一、UNet网络原理 U-Net,自2015年诞生以来,便以其卓越的性能在生物医学图像分割领域崭露头角。作为FCN的一种变体,U-Net凭借其Encoder-Decoder的精巧结构,不仅在医学图像分析中大放异彩,更在卫星图像分割、工业瑕疵检测等多个领域展现出强大的应用能力。UNet是一种常用于图像分割的卷积神经网络架构,其特点在于其U型结构,包括一个收缩路径
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- Python微调DeepSeek-R1-Distill-Qwen-1.5B模型:使用Transformers和PyTorch进行训练
煤炭里de黑猫
pytorchpython人工智能机器学习
前言近年来,基于Transformer架构的预训练语言模型如GPT、BERT等已经取得了显著的成果,广泛应用于自然语言处理(NLP)的各个领域。为了让这些模型更加适应特定任务,我们通常会进行微调(Fine-tuning)。本博客将详细介绍如何微调一个名为Qwen-1.5B的模型,使用HuggingFace的Transformers库与PyTorch框架来实现。我们将通过一步步的代码解析,帮助你理解
- 基于UNet对DRIVE视网膜进行图像分割
海洋 之心
深度学习pytorch人工智能python
前言大家好,我是阿光。本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。正在更新中~✨我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.8.1项目专栏:【PyTorch深度学习项目实战100例】一、基于UNet对DRIVE视网膜进行图像
- Pytorch实现之混合成员GAN训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch生成对抗网络人工智能python深度学习机器学习计算机视觉
简介简介:提出一种新的MMGAN架构,使用常见生成器分布的混合对每个数据分布进行建模。由于生成器在多个真实数据分布之间共享,高度共享的生成器(通过混合权重反映)捕获分布的公共方面,而非共享的生成器捕获独特方面。论文题目:MIXEDMEMBERSHIPGENERATIVEADVERSARIALNETWORKS(混合成员生成对抗网络)会议:IEEEInternationalConferenceonIm
- Pytorch实现论文:基于多尺度融合生成对抗网络的水下图像增强
这张生成的图像能检测吗
GAN系列pytorch生成对抗网络人工智能深度学习神经网络计算机视觉python
简介简介:提出了一种新型的水下图像增强算法,基于多尺度融合生成对抗网络,名为UMSGAN,以解决低对比度和颜色失真的问题。首先经过亮度的处理,将处理后的图像输入设计的MFFEM模块和RM模块生成图像。该算法旨在适应各种水下场景,提供颜色校正和细节增强。论文题目:Underwaterimageenhancementbasedonmultiscalefusiongenerativeadversaria
- 即插即用的注意力机制21种
@Mr_LiuYang
论文阅读AttentionModule注意力机制即插即用
提示:谬误之处请指出更正摘要随着深度学习特别是自然语言处理领域的飞速发展,注意力机制(AttentionMechanism)已成为提升模型表现的关键技术,本文主要记录了即插即用的注意力机制结构的功能、出处及核心代码。1、SEBlock(Squeeze-and-Excitation)功能:自适应学习通道权重,增强重要通道特征。出处:SENet#SEBlock(PyTorch)classSEBlock
- 【PyTorch】torch.nn.Conv1d 类:一维卷积层(处理一维数据的卷积运算)
彬彬侠
PyTorch基础Conv1d一维卷积层神经网络深度学习pytorchpython
torch.nn.Conv1d是PyTorch中的一维卷积层,用于处理一维数据的卷积运算,常用于时序数据、音频信号、文本等的处理。与二维卷积(Conv2d)和三维卷积(Conv3d)类似,Conv1d通过在输入数据的一个维度(通常是时间或空间)上滑动卷积核来提取特征。定义与参数torch.nn.Conv1d的定义如下:torch.nn.Conv1d(in_channels,out_channels
- PyTorch中文文档:API查询与使用的终极指南
仲照武Blanche
PyTorch中文文档:API查询与使用的终极指南【下载地址】PyTorch中文文档-API查询与使用PyTorch中文文档-API查询与使用欢迎来到PyTorch中文文档资源页面!本资源为您提供了一份详尽的《pytorch中文文档-API查询与使用.pdf》,这是每一个PyTorch开发者不可或缺的学习和参考资料项目地址:https://gitcode.com/Open-source-docum
- PyTorch知识点总结之一
Rain松
机器学习与深度学习pytorch深度学习python
PyTorch知识点总结之一1.什么是PyTorch?它有什么特点和优势?PyTorch是一个基于Python的科学计算库,它是用于机器学习和深度学习的框架之一。它由Facebook的人工智能研究团队开发和维护,是一个开源的软件包,可以帮助开发者构建各种深度学习模型。PyTorch的特点和优势如下:易于使用和学习:PyTorch采用了类似于Python的语法,使得它容易上手和学习。它还提供了丰富的
- 强大的销售团队背后 竟然是大数据分析的身影
蓝儿唯美
数据分析
Mark Roberge是HubSpot的首席财务官,在招聘销售职位时使用了大量数据分析。但是科技并没有挤走直觉。
大家都知道数理学家实际上已经渗透到了各行各业。这些热衷数据的人们通过处理数据理解商业流程的各个方面,以重组弱点,增强优势。
Mark Roberge是美国HubSpot公司的首席财务官,HubSpot公司在构架集客营销现象方面出过一份力——因此他也是一位数理学家。他使用数据分析
- Haproxy+Keepalived高可用双机单活
bylijinnan
负载均衡keepalivedhaproxy高可用
我们的应用MyApp不支持集群,但要求双机单活(两台机器:master和slave):
1.正常情况下,只有master启动MyApp并提供服务
2.当master发生故障时,slave自动启动本机的MyApp,同时虚拟IP漂移至slave,保持对外提供服务的IP和端口不变
F5据说也能满足上面的需求,但F5的通常用法都是双机双活,单活的话还没研究过
服务器资源
10.7
- eclipse编辑器中文乱码问题解决
0624chenhong
eclipse乱码
使用Eclipse编辑文件经常出现中文乱码或者文件中有中文不能保存的问题,Eclipse提供了灵活的设置文件编码格式的选项,我们可以通过设置编码 格式解决乱码问题。在Eclipse可以从几个层面设置编码格式:Workspace、Project、Content Type、File
本文以Eclipse 3.3(英文)为例加以说明:
1. 设置Workspace的编码格式:
Windows-&g
- 基础篇--resources资源
不懂事的小屁孩
android
最近一直在做java开发,偶尔敲点android代码,突然发现有些基础给忘记了,今天用半天时间温顾一下resources的资源。
String.xml 字符串资源 涉及国际化问题
http://www.2cto.com/kf/201302/190394.html
string-array
- 接上篇补上window平台自动上传证书文件的批处理问卷
酷的飞上天空
window
@echo off
: host=服务器证书域名或ip,需要和部署时服务器的域名或ip一致 ou=公司名称, o=公司名称
set host=localhost
set ou=localhost
set o=localhost
set password=123456
set validity=3650
set salias=s
- 企业物联网大潮涌动:如何做好准备?
蓝儿唯美
企业
物联网的可能性也许是无限的。要找出架构师可以做好准备的领域然后利用日益连接的世界。
尽管物联网(IoT)还很新,企业架构师现在也应该为一个连接更加紧密的未来做好计划,而不是跟上闸门被打开后的集成挑战。“问题不在于物联网正在进入哪些领域,而是哪些地方物联网没有在企业推进,” Gartner研究总监Mike Walker说。
Gartner预测到2020年物联网设备安装量将达260亿,这些设备在全
- spring学习——数据库(mybatis持久化框架配置)
a-john
mybatis
Spring提供了一组数据访问框架,集成了多种数据访问技术。无论是JDBC,iBATIS(mybatis)还是Hibernate,Spring都能够帮助消除持久化代码中单调枯燥的数据访问逻辑。可以依赖Spring来处理底层的数据访问。
mybatis是一种Spring持久化框架,要使用mybatis,就要做好相应的配置:
1,配置数据源。有很多数据源可以选择,如:DBCP,JDBC,aliba
- Java静态代理、动态代理实例
aijuans
Java静态代理
采用Java代理模式,代理类通过调用委托类对象的方法,来提供特定的服务。委托类需要实现一个业务接口,代理类返回委托类的实例接口对象。
按照代理类的创建时期,可以分为:静态代理和动态代理。
所谓静态代理: 指程序员创建好代理类,编译时直接生成代理类的字节码文件。
所谓动态代理: 在程序运行时,通过反射机制动态生成代理类。
一、静态代理类实例:
1、Serivce.ja
- Struts1与Struts2的12点区别
asia007
Struts1与Struts2
1) 在Action实现类方面的对比:Struts 1要求Action类继承一个抽象基类;Struts 1的一个具体问题是使用抽象类编程而不是接口。Struts 2 Action类可以实现一个Action接口,也可以实现其他接口,使可选和定制的服务成为可能。Struts 2提供一个ActionSupport基类去实现常用的接口。即使Action接口不是必须实现的,只有一个包含execute方法的P
- 初学者要多看看帮助文档 不要用js来写Jquery的代码
百合不是茶
jqueryjs
解析json数据的时候需要将解析的数据写到文本框中, 出现了用js来写Jquery代码的问题;
1, JQuery的赋值 有问题
代码如下: data.username 表示的是: 网易
$("#use
- 经理怎么和员工搞好关系和信任
bijian1013
团队项目管理管理
产品经理应该有坚实的专业基础,这里的基础包括产品方向和产品策略的把握,包括设计,也包括对技术的理解和见识,对运营和市场的敏感,以及良好的沟通和协作能力。换言之,既然是产品经理,整个产品的方方面面都应该能摸得出门道。这也不懂那也不懂,如何让人信服?如何让自己懂?就是不断学习,不仅仅从书本中,更从平时和各种角色的沟通
- 如何为rich:tree不同类型节点设置右键菜单
sunjing
contextMenutreeRichfaces
组合使用target和targetSelector就可以啦,如下: <rich:tree id="ruleTree" value="#{treeAction.ruleTree}" var="node" nodeType="#{node.type}"
selectionChangeListener=&qu
- 【Redis二】Redis2.8.17搭建主从复制环境
bit1129
redis
开始使用Redis2.8.17
Redis第一篇在Redis2.4.5上搭建主从复制环境,对它的主从复制的工作机制,真正的惊呆了。不知道Redis2.8.17的主从复制机制是怎样的,Redis到了2.4.5这个版本,主从复制还做成那样,Impossible is nothing! 本篇把主从复制环境再搭一遍看看效果,这次在Unbuntu上用官方支持的版本。 Ubuntu上安装Red
- JSONObject转换JSON--将Date转换为指定格式
白糖_
JSONObject
项目中,经常会用JSONObject插件将JavaBean或List<JavaBean>转换为JSON格式的字符串,而JavaBean的属性有时候会有java.util.Date这个类型的时间对象,这时JSONObject默认会将Date属性转换成这样的格式:
{"nanos":0,"time":-27076233600000,
- JavaScript语言精粹读书笔记
braveCS
JavaScript
【经典用法】:
//①定义新方法
Function .prototype.method=function(name, func){
this.prototype[name]=func;
return this;
}
//②给Object增加一个create方法,这个方法创建一个使用原对
- 编程之美-找符合条件的整数 用字符串来表示大整数避免溢出
bylijinnan
编程之美
import java.util.LinkedList;
public class FindInteger {
/**
* 编程之美 找符合条件的整数 用字符串来表示大整数避免溢出
* 题目:任意给定一个正整数N,求一个最小的正整数M(M>1),使得N*M的十进制表示形式里只含有1和0
*
* 假设当前正在搜索由0,1组成的K位十进制数
- 读书笔记
chengxuyuancsdn
读书笔记
1、Struts访问资源
2、把静态参数传递给一个动作
3、<result>type属性
4、s:iterator、s:if c:forEach
5、StringBuilder和StringBuffer
6、spring配置拦截器
1、访问资源
(1)通过ServletActionContext对象和实现ServletContextAware,ServletReque
- [通讯与电力]光网城市建设的一些问题
comsci
问题
信号防护的问题,前面已经说过了,这里要说光网交换机与市电保障的关系
我们过去用的ADSL线路,因为是电话线,在小区和街道电力中断的情况下,只要在家里用笔记本电脑+蓄电池,连接ADSL,同样可以上网........
 
- oracle 空间RESUMABLE
daizj
oracle空间不足RESUMABLE错误挂起
空间RESUMABLE操作 转
Oracle从9i开始引入这个功能,当出现空间不足等相关的错误时,Oracle可以不是马上返回错误信息,并回滚当前的操作,而是将操作挂起,直到挂起时间超过RESUMABLE TIMEOUT,或者空间不足的错误被解决。
这一篇简单介绍空间RESUMABLE的例子。
第一次碰到这个特性是在一次安装9i数据库的过程中,在利用D
- 重构第一次写的线程池
dieslrae
线程池 python
最近没有什么学习欲望,修改之前的线程池的计划一直搁置,这几天比较闲,还是做了一次重构,由之前的2个类拆分为现在的4个类.
1、首先是工作线程类:TaskThread,此类为一个工作线程,用于完成一个工作任务,提供等待(wait),继续(proceed),绑定任务(bindTask)等方法
#!/usr/bin/env python
# -*- coding:utf8 -*-
- C语言学习六指针
dcj3sjt126com
c
初识指针,简单示例程序:
/*
指针就是地址,地址就是指针
地址就是内存单元的编号
指针变量是存放地址的变量
指针和指针变量是两个不同的概念
但是要注意: 通常我们叙述时会把指针变量简称为指针,实际它们含义并不一样
*/
# include <stdio.h>
int main(void)
{
int * p; // p是变量的名字, int *
- yii2 beforeSave afterSave beforeDelete
dcj3sjt126com
delete
public function afterSave($insert, $changedAttributes)
{
parent::afterSave($insert, $changedAttributes);
if($insert) {
//这里是新增数据
} else {
//这里是更新数据
}
}
 
- timertask
shuizhaosi888
timertask
java.util.Timer timer = new java.util.Timer(true);
// true 说明这个timer以daemon方式运行(优先级低,
// 程序结束timer也自动结束),注意,javax.swing
// 包中也有一个Timer类,如果import中用到swing包,
// 要注意名字的冲突。
TimerTask task = new
- Spring Security(13)——session管理
234390216
sessionSpring Security攻击保护超时
session管理
目录
1.1 检测session超时
1.2 concurrency-control
1.3 session 固定攻击保护
 
- 公司项目NODEJS实践0.3[ mongo / session ...]
逐行分析JS源代码
mongodbsessionnodejs
http://www.upopen.cn
一、前言
书接上回,我们搭建了WEB服务端路由、模板等功能,完成了register 通过ajax与后端的通信,今天主要完成数据与mongodb的存取,实现注册 / 登录 /
- pojo.vo.po.domain区别
LiaoJuncai
javaVOPOJOjavabeandomain
POJO = "Plain Old Java Object",是MartinFowler等发明的一个术语,用来表示普通的Java对象,不是JavaBean, EntityBean 或者 SessionBean。POJO不但当任何特殊的角色,也不实现任何特殊的Java框架的接口如,EJB, JDBC等等。
即POJO是一个简单的普通的Java对象,它包含业务逻辑
- Windows Error Code
OhMyCC
windows
0 操作成功完成.
1 功能错误.
2 系统找不到指定的文件.
3 系统找不到指定的路径.
4 系统无法打开文件.
5 拒绝访问.
6 句柄无效.
7 存储控制块被损坏.
8 存储空间不足, 无法处理此命令.
9 存储控制块地址无效.
10 环境错误.
11 试图加载格式错误的程序.
12 访问码无效.
13 数据无效.
14 存储器不足, 无法完成此操作.
15 系
- 在storm集群环境下发布Topology
roadrunners
集群stormtopologyspoutbolt
storm的topology设计和开发就略过了。本章主要来说说如何在storm的集群环境中,通过storm的管理命令来发布和管理集群中的topology。
1、打包
打包插件是使用maven提供的maven-shade-plugin,详细见maven-shade-plugin。
<plugin>
<groupId>org.apache.maven.
- 为什么不允许代码里出现“魔数”
tomcat_oracle
java
在一个新项目中,我最先做的事情之一,就是建立使用诸如Checkstyle和Findbugs之类工具的准则。目的是制定一些代码规范,以及避免通过静态代码分析就能够检测到的bug。 迟早会有人给出案例说这样太离谱了。其中的一个案例是Checkstyle的魔数检查。它会对任何没有定义常量就使用的数字字面量给出警告,除了-1、0、1和2。 很多开发者在这个检查方面都有问题,这可以从结果
- zoj 3511 Cake Robbery(线段树)
阿尔萨斯
线段树
题目链接:zoj 3511 Cake Robbery
题目大意:就是有一个N边形的蛋糕,切M刀,从中挑选一块边数最多的,保证没有两条边重叠。
解题思路:有多少个顶点即为有多少条边,所以直接按照切刀切掉点的个数排序,然后用线段树维护剩下的还有哪些点。
#include <cstdio>
#include <cstring>
#include <vector&