目录
简介
方法一之SpaCy
方法二之Sentence Transformers
方法三之scipy
方法四之torch
方法五之TFHub Universal Sentence Encoder
参考资料
下面的大多数库应该是语义相似性比较的不错选择。您可以使用这些库中的预训练模型生成单词或句子向量,从而跳过直接单词比较。
参考文献
Linguistic Features · spaCy Usage Documentation
需要下载模型
要使用 en_core_web_md,请使用 python -m spacy download en_core_web_md 进行下载。要使用 en_core_web_lg,请使用 python -m spacy download en_core_web_lg。 大型模型大约为 830mb 左右,而且速度很慢,因此中型模型是一个不错的选择。
python -m spacy download en_core_web_lg
代码
import spacy
nlp = spacy.load("en_core_web_lg")
doc1 = nlp(u'the person wear red T-shirt')
doc2 = nlp(u'this person is walking')
doc3 = nlp(u'the boy wear red T-shirt')
print(doc1.similarity(doc2))
print(doc1.similarity(doc3))
print(doc2.similarity(doc3))
结果
0.7003971105290047
0.9671912343259517
0.6121211244876517
Sentence Transformers
GitHub - UKPLab/sentence-transformers: Multilingual Sentence & Image Embeddings with BERT
Semantic Textual Similarity — Sentence-Transformers documentation
代码
这个会安装词嵌入
pip install -U sentence-transformers
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
sentences = [
'the person wear red T-shirt',
'this person is walking',
'the boy wear red T-shirt'
]
sentence_embeddings = model.encode(sentences)
for sentence, embedding in zip(sentences, sentence_embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
print("")
输出
Sentence: the person wear red T-shirt
Embedding: [ 1.31643847e-01 -4.20616418e-01 ... 8.13076794e-01 -4.64620918e-01]
Sentence: this person is walking
Embedding: [-3.52878094e-01 -5.04286848e-02 ... -2.36091137e-01 -6.77282438e-02]
Sentence: the boy wear red T-shirt
Embedding: [-2.36365378e-01 -8.49713564e-01 ... 1.06414437e+00 -2.70157874e-01]
代码
from scipy.spatial import distance
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[1]))
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[2]))
print(1 - distance.cosine(sentence_embeddings[1], sentence_embeddings[2]))
输出
0.4643629193305969
0.9069876074790955
0.3275738060474396
代码
import torch.nn
cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)
b = torch.from_numpy(sentence_embeddings)
print(cos(b[0], b[1]))
print(cos(b[0], b[2]))
print(cos(b[1], b[2]))
输出
tensor(0.4644)
tensor(0.9070)
tensor(0.3276)
TFHub Universal Sentence Encoder
https://tfhub.dev/google/universal-sentence-encoder/4
https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/semantic_similarity_with_tf_hub_universal_encoder.ipynb
这个大约 1GB 的模型非常大,而且看起来比其他模型慢。这也会生成句子的嵌入
代码
import tensorflow_hub as hub
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
embeddings = embed([
"the person wear red T-shirt",
"this person is walking",
"the boy wear red T-shirt"
])
print(embeddings)
from scipy.spatial import distance
print(1 - distance.cosine(embeddings[0], embeddings[1]))
print(1 - distance.cosine(embeddings[0], embeddings[2]))
print(1 - distance.cosine(embeddings[1], embeddings[2]))
输出
tf.Tensor(
[[ 0.063188 0.07063895 -0.05998802 ... -0.01409875 0.01863449
0.01505797]
[-0.06786212 0.01993554 0.03236153 ... 0.05772103 0.01787272
0.01740014]
[ 0.05379306 0.07613157 -0.05256693 ... -0.01256405 0.0213196
-0.00262441]], shape=(3, 512), dtype=float32)
0.15320375561714172
0.8592830896377563
0.09080004692077637
其它嵌入
https://github.com/facebookresearch/InferSent
GitHub - Tiiiger/bert_score: BERT score for text generation
How to compute the similarity between two text documents?
https://en.wikipedia.org/wiki/Cosine_similarity#Angular_distance_and_similarity
https://towardsdatascience.com/word-distance-between-word-embeddings-cc3e9cf1d632
scipy.spatial.distance.cosine — SciPy v0.14.0 Reference Guide
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CosineSimilarity
deep learning - is there a way to check similarity between two full sentences in python? - Stack Overflow
NLP Town