python opencv 人脸比对_Python-OpenCV 干货 人脸辨识1、余弦相似度

一、目的

通过某人的一张照片,在他与别人的合影中找到他。

1.算法描述

读取两张图像,生成图像矩阵,以两个图像矩阵为基础,调用OpenCV的相关函数完成人脸定位。

读取两张图像的人脸区域,生成人脸图像矩阵,并将人脸矩阵转换为灰度图

比较分析人脸图像矩阵,找到最相近的人脸。

2.比较算法使用欧氏距离算法

在进行人脸识别是,可使用标准欧氏距离算法。算法基本原理是:

将标准欧氏距离算法作为比较分析人脸图像矩阵方法。

首先,将两个人脸调整为指定大小;

接着,用所包含像素的三元色数值组成特征组,然后将特征组映射为高维空间的某个点(在此称之为特征点);

最后,计算两个人脸图像的特征点映射到高维空间后的距离,以欧氏距离最小者为最匹配的人脸。

二、代码

下面代码需要OPENCV的data库,在代码中需要指向opencv的data位置。

git clone https://github.com/opencv/opencv

# -*- coding: utf-8 -*-

# code:

# 11-2.py

# 标准欧氏距离实现的人脸识别

import cv2

import numpy as np

print('loding...')

OPCV_PATH = r"D:/tools/opencv/sources/data/haarcascades"

def get_EuclideanDistance(x, y):

myx = np.array(x)

myy = np.array(y)

return np.sqrt(np.sum((myx - myy) * (myx - myy))) * np.var(myx - myy)

def get_distance(img, findimg):

newsize = (img.shape[1], img.shape[0])

fimg = cv2.resize(findimg, newsize)

my_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# my_fimg=cv2.cvtColor(fimg,cv2.COLORBGR2GRAY)

my_fimg = cv2.cvtColor(fimg, cv2.COLOR_BGR2GRAY)

return get_EuclideanDistance(my_img, my_fimg)

color = (0, 0, 0) # 设置人脸框的颜色

def findface(src, index):

image = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

cv2.equalizeHist(image, image) # 灰度图像进行直方图等距化

# 加载OpenCv的面部特征库

classfier = cv2.CascadeClassifier(OPCV_PATH + "/haarcascade_frontalface_alt.xml")

# 找到人脸的位置

# 设定最小图像的大小

divisor = 8

h = image.shape[1]

w = image.shape[0]

minSize = (int(w / divisor), int(h / divisor)) # 这里加了一个取整函数

rect = classfier.detectMultiScale(image, 1.2, 2, cv2.CASCADE_SCALE_IMAGE, minSize)

if len(rect) > 0: # 如果人脸数组长度大于0

for faceRect in rect: # 对每一个人脸画矩形框

x, y, w, h = faceRect

cv2.rectangle(image, (x, y), (x + w, y + h), color)

cv2.imshow('img' + str(index), image)

result = []

for r in rect:

result.append([(r[0], r[1]), (r[0] + r[2], r[1] + r[3])])

print(result)

return result

search_file = 'search.jpg'

origin_file = 'origin.jpg'

origin_img = cv2.imread(origin_file)

search_img = cv2.imread(search_file)

# 获取人脸在图像中的坐标

origin_result = findface(origin_img, 1)[0]

origin_img_crop = origin_img[origin_result[0][1]:origin_result[1][1], origin_result[0][0]:origin_result[1][0], :]

cv2.rectangle(origin_img, origin_result[0], origin_result[1], (255, 0, 255))

search_result = findface(search_img, 2)

# 比较第1张脸

tmp = search_img[search_result[0][0][1]:search_result[0][1][1], search_result[0][0][0]:search_result[0][1][0], :]

distance_face1 = get_distance(origin_img_crop, tmp)

print('distance1 = %f' % distance_face1)

cv2.imshow('1', tmp)

# 比较第2张脸

tmp = search_img[search_result[1][0][1]:search_result[1][1][1], search_result[1][0][0]:search_result[1][1][0], :]

distance_face2 = get_distance(origin_img_crop, tmp)

print('distance2 = %f' % distance_face2)

cv2.imshow('2', tmp)

if distance_face1 < distance_face2:

cv2.rectangle(search_img, search_result[0][0], search_result[0][1], (255, 0, 255))

else:

cv2.rectangle(search_img, search_result[1][0], search_result[1][1], (255, 0, 255))

cv2.imshow('search', search_img)

cv2.imshow('origin', origin_img)

cv2.waitKey()

cv2.destroyAllWindows()

原始图片:

从下面的图中找到他:

运行效果:

你可能感兴趣的:(python,opencv,人脸比对)