自定义coco数据集

1、环境

anaconda环境安装配置

2、工具

安装labelme工具

3、安装软件

3.1、打开anaconda控制台

自定义coco数据集_第1张图片

3.2、创建虚拟环境

conda create -n labelme python=3.7

3.3、激活环境

conda activate labelme

3.4、下载labelme

pip install labelme

3.5、输入labelme打开软件

以后打开跳过3.2和3.4打开即可

labelme

自定义coco数据集_第2张图片

4、制作labelme数据集

4.1、打开文件夹

存有多张图片的文件夹
图片为统一格式(比如都为.png或者.jpg)

自定义coco数据集_第3张图片

4.2、创建矩形框

自定义coco数据集_第4张图片

4.3、label名称

为框选住的类别起一个名字

自定义coco数据集_第5张图片
再次框选的时候会保存已经存在的label

自定义coco数据集_第6张图片

4.4、保存

自定义coco数据集_第7张图片

保存名字和图片在同一个路径,同样的名字

自定义coco数据集_第8张图片

4.5、结果

点击下一个继续标注label
自定义coco数据集_第9张图片

把需要的图片全部做标签保存
自定义coco数据集_第10张图片

5、转换coco数据

5.1、创建目录

  • dataset中放第4步制作好的数据集
    ├─data-labelme
    │  ├─coco
    │  │  ├─annotations
    │  │  ├─train2017
    │  │  └─val2017
    │  ├─dataset
    ├─json2coco.py
    
    

5.2、运行文件

  • 然后执行json2coco.py文件
    将代码中标有修改的注释下面代码进行替换

    import os
    import json
    import numpy as np
    import glob
    import shutil
    import cv2
    from sklearn.model_selection import train_test_split
    
    np.random.seed(41)
    
    # 修改1->改成自己的类别
    classname_to_id = {
        "green": 0,  
        "purple": 1,
        "yellow": 2
    }
    
    
    class Lableme2CoCo:
    
        def __init__(self):
            self.images = []
            self.annotations = []
            self.categories = []
            self.img_id = 0
            self.ann_id = 0
    
        def save_coco_json(self, instance, save_path):
            json.dump(instance, open(save_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=1)  # indent=2 更加美观显示
    
        # 由json文件构建COCO
        def to_coco(self, json_path_list):
            self._init_categories()
            for json_path in json_path_list:
                obj = self.read_jsonfile(json_path)
                self.images.append(self._image(obj, json_path))
                shapes = obj['shapes']
                for shape in shapes:
                    annotation = self._annotation(shape)
                    self.annotations.append(annotation)
                    self.ann_id += 1
                self.img_id += 1
            instance = {}
            instance['info'] = 'spytensor created'
            instance['license'] = ['license']
            instance['images'] = self.images
            instance['annotations'] = self.annotations
            instance['categories'] = self.categories
            return instance
    
        # 构建类别
        def _init_categories(self):
            for k, v in classname_to_id.items():
                category = {}
                category['id'] = v
                category['name'] = k
                self.categories.append(category)
    
        # 构建COCO的image字段
        def _image(self, obj, path):
            image = {}
            from labelme import utils
            img_x = utils.img_b64_to_arr(obj['imageData'])
            h, w = img_x.shape[:-1]
            image['height'] = h
            image['width'] = w
            image['id'] = self.img_id
            image['file_name'] = os.path.basename(path).replace(".json", ".jpg")
            return image
    
        # 构建COCO的annotation字段
        def _annotation(self, shape):
            # print('shape', shape)
            label = shape['label']
            points = shape['points']
            annotation = {}
            annotation['id'] = self.ann_id
            annotation['image_id'] = self.img_id
            annotation['category_id'] = int(classname_to_id[label])
            annotation['segmentation'] = [np.asarray(points).flatten().tolist()]
            annotation['bbox'] = self._get_box(points)
            annotation['iscrowd'] = 0
            annotation['area'] = 1.0
            return annotation
    
        # 读取json文件,返回一个json对象
        def read_jsonfile(self, path):
            with open(path, "r", encoding='utf-8') as f:
                return json.load(f)
    
        # COCO的格式: [x1,y1,w,h] 对应COCO的bbox格式
        def _get_box(self, points):
            min_x = min_y = np.inf
            max_x = max_y = 0
            for x, y in points:
                min_x = min(min_x, x)
                min_y = min(min_y, y)
                max_x = max(max_x, x)
                max_y = max(max_y, y)
            return [min_x, min_y, max_x - min_x, max_y - min_y]
    
    # 训练过程中,如果遇到Index put requires the source and destination dtypes match, got Long for the destination and Int for the source
    # 参考:https://github.com/open-mmlab/mmdetection/issues/6706
    
    
    if __name__ == '__main__':
        labelme_path = "./data-labelme/dataset"
        saved_coco_path = "./data-labelme/"
        print('reading...')
        # 创建文件
        if not os.path.exists("%scoco/annotations/" % saved_coco_path):
            os.makedirs("%scoco/annotations/" % saved_coco_path)
        if not os.path.exists("%scoco/train2017/" % saved_coco_path):
            os.makedirs("%scoco/train2017" % saved_coco_path)
        if not os.path.exists("%scoco/val2017/" % saved_coco_path):
            os.makedirs("%scoco/val2017" % saved_coco_path)
        # 获取images目录下所有的joson文件列表
        print(labelme_path + "/*.json")
        json_list_path = glob.glob(labelme_path + "/*.json")
        print('json_list_path: ', len(json_list_path))
        # 修改2训练集和测试集的比例
        # 数据划分,这里没有区分val2017和tran2017目录,所有图片都放在images目录下
        train_path, val_path = train_test_split(json_list_path, test_size=0.1, train_size=0.9)
        print("train_n:", len(train_path), 'val_n:', len(val_path))
        # 把训练集转化为COCO的json格式
        l2c_train = Lableme2CoCo()
        train_instance = l2c_train.to_coco(train_path)
        l2c_train.save_coco_json(train_instance, '%scoco/annotations/instances_train2017.json' % saved_coco_path)
        for file in train_path:
            # 修改3 换成自己图片的后缀名
            img_name = file.replace('json', 'jpg')
            temp_img = cv2.imread(img_name)
            try:
                cv2.imwrite("{}coco/train2017/{}".format(saved_coco_path, img_name.split('\\')[-1]), temp_img)
            except Exception as e:
                print(e)
                print('Wrong Image:', img_name )
                continue
            print(img_name + '-->', img_name)
    
        for file in val_path:
            # 修改4 换成自己图片的后缀名
            img_name = file.replace('json', 'jpg')
            temp_img = cv2.imread(img_name)
            try:
                cv2.imwrite("{}coco/val2017/{}".format(saved_coco_path, img_name.split('\\')[-1]), temp_img)
            except Exception as e:
                print(e)
                print('Wrong Image:', img_name)
                continue
            print(img_name + '-->', img_name)
    
        # 把验证集转化为COCO的json格式
        l2c_val = Lableme2CoCo()
        val_instance = l2c_val.to_coco(val_path)
        l2c_val.save_coco_json(val_instance, '%scoco/annotations/instances_val2017.json' % saved_coco_path)
    
    
    

5.3、运行结果

自定义coco数据集_第11张图片
制作数据集完毕,可以进行自己项目的训练了

你可能感兴趣的:(深度学习,Python,python,深度学习)