G2O整理

G2O整理

整体内容参考:

从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

从零开始一起学习SLAM | 掌握g2o顶点编程套路

从零开始一起学习SLAM | 掌握g2o边的代码套路

什么是图优化

什么是图?

图优化里的图就是数据结构里的图,一个图由若干个顶点(vertex),以及连接这些顶点的边(edge)组成,给你举个例子

比如一个机器人在房屋里移动,它在某个时刻 t 的位姿(pose)就是一个顶点,这个也是待优化的变量。而位姿之间的关系就构成了一个边,比如时刻 t 和时刻 t+1 之间的相对位姿变换矩阵就是边,边通常表示误差项。

在SLAM里,图优化一般分解为两个任务:

1、构建图。机器人位姿作为顶点,位姿间关系作为边。

2、优化图。调整机器人的位姿(顶点)来尽量满足边的约束,使得误差最小。
G2O整理_第1张图片
PNP中图优化的例子
G2O整理_第2张图片

G2O整体结构图

G2O整理_第3张图片

1. 图的核心

SparseOptimizer是整个图的核心,注意右上角的 is-a 实心箭头,这个SparseOptimizer它是一个Optimizable Graph,从而也是一个超图(HyperGraph)

暂时只需要了解一下它们的名字,有些以后用不到,有些以后用到了再回看。

2. 顶点和边

注意看 has-many 箭头,你看这个超图包含了许多顶点(HyperGraph::Vertex)边(HyperGraph::Edge)。而这些顶点继承自 Base Vertex,也就是OptimizableGraph::Vertex,而边可以继承自 BaseUnaryEdge(单边), BaseBinaryEdge(双边)BaseMultiEdge(多边),它们都叫做OptimizableGraph::Edge

3. 配置SparseOptimizer的优化算法和求解器

整个图的核心SparseOptimizer 包含一个优化算法(OptimizationAlgorithm)的对象。OptimizationAlgorithm是通过OptimizationWithHessian 来实现的。其中迭代策略可以从Gauss-Newton(高斯牛顿法,简称GN), Levernberg-Marquardt(简称LM法), Powell’s dogleg 三者中间选择一个(我们常用的是GN和LM)

4. 求解

OptimizationWithHessian 内部包含一个求解器(Solver),这个Solver实际是由一个BlockSolver组成的。这个BlockSolver有两个部分,一个是SparseBlockMatrix ,用于计算稀疏的雅可比和Hessian矩阵;一个是线性方程的求解器(LinearSolver),它用于计算迭代过程中最关键的一步HΔx=−b,LinearSolver有几种方法可以选择:PCG, CSparse, Choldmod

编程顺序

采用十四讲中g2o求解曲线参数的例子来说明:

G2O整理_第4张图片

代码

typedef g2o::BlockSolver< g2o::BlockSolverTraits<3,1> > Block;  // 每个误差项优化变量维度为3,误差值维度为1

// 第1步:创建一个线性求解器LinearSolver
Block::LinearSolverType* linearSolver = new g2o::LinearSolverDense<Block::PoseMatrixType>(); 

// 第2步:创建BlockSolver。并用上面定义的线性求解器初始化
Block* solver_ptr = new Block( linearSolver );      

// 第3步:创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg( solver_ptr );

// 第4步:创建终极大boss 稀疏优化器(SparseOptimizer)
g2o::SparseOptimizer optimizer;     // 图模型
optimizer.setAlgorithm( solver );   // 设置求解器
optimizer.setVerbose( true );       // 打开调试输出

// 第5步:定义图的顶点和边。并添加到SparseOptimizer中
CurveFittingVertex* v = new CurveFittingVertex(); //往图中增加顶点
v->setEstimate( Eigen::Vector3d(0,0,0) );
v->setId(0);
optimizer.addVertex( v );
for ( int i=0; i<N; i++ )    // 往图中增加边
{
  CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
  edge->setId(i);
  edge->setVertex( 0, v );                // 设置连接的顶点
  edge->setMeasurement( y_data[i] );      // 观测数值
  edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
  optimizer.addEdge( edge );
}

// 第6步:设置优化参数,开始执行优化
optimizer.initializeOptimization();
optimizer.optimize(100);

求解步骤

1. 创建线性求解器LinearSolver

我们要求的增量方程的形式是:H△X=-b,通常情况下想到的方法就是直接求逆,也就是△X=-H.inv*b。看起来好像很简单,但这有个前提,就是H的维度较小,此时只需要矩阵的求逆就能解决问题。但是当H的维度较大时,矩阵求逆变得很困难,求解问题也变得很复杂。

G2O上的求解方法总结:

  • LinearSolverCholmod :使用sparse cholesky分解法。继承自LinearSolverCCS
  • LinearSolverCSparse:使用CSparse法。继承自LinearSolverCCS
  • LinearSolverPCG :使用preconditioned conjugate gradient 法,继承自LinearSolver
  • LinearSolverDense :使用dense cholesky分解法。继承自LinearSolver
  • LinearSolverEigen: 依赖项只有eigen,使用eigen中sparse Cholesky 求解,因此编译好后可以方便的在其他地方使用,性能和CSparse差不多。继承自LinearSolver

2. 创建BlockSolver 并用上面定义的线性求解器初始化

BlockSolver 内部包含 LinearSolver,用上面我们定义的线性求解器LinearSolver来初始化。

BlockSolver有两种定义方式

一种是指定的固定变量的solver,我们来看一下定义

using BlockSolverPL = BlockSolver< BlockSolverTraits >;

其中p代表pose的维度(注意一定是流形manifold下的最小表示),l表示landmark的维度

另一种是可变尺寸的solver,定义如下

using BlockSolverX = BlockSolverPL;

比较常用的几种类型

  • BlockSolver_6_3 :表示pose 是6维,观测点是3维。用于3D SLAM中的BA
  • BlockSolver_7_3:在BlockSolver_6_3 的基础上多了一个scale
  • BlockSolver_3_2:表示pose 是3维,观测点是2维

3. 创建总求解器solver。并从GN, LM, DogLeg 中选一个,再用上述块求解器BlockSolver初始化

Solver的优化方法有三种:分别是高斯牛顿(GaussNewton)法,LM(Levenberg–Marquardt)法、Dogleg法

GN、 LM、 Doglet算法内部,会发现他们都继承自同一个类:OptimizationWithHessian

OptimizationAlgorithmWithHessian,发现它又继承自OptimizationAlgorithm

总之,在该阶段,我们可以选则三种方法:

g2o::OptimizationAlgorithmGaussNewton
g2o::OptimizationAlgorithmLevenberg 
g2o::OptimizationAlgorithmDogleg 

4. 创建终极大boss 稀疏优化器(SparseOptimizer),并用已定义求解器作为求解方法。

创建稀疏优化器

g2o::SparseOptimizer optimizer;

用前面定义好的求解器作为求解方法:

SparseOptimizer::setAlgorithm(OptimizationAlgorithm* algorithm)

其中setVerbose是设置优化过程输出信息用的

SparseOptimizer::setVerbose(bool verbose)

5. 定义图的顶点和边。 添加到SparseOptimizer中 (最重要的一步)

顶点(Vertex) 从哪里来的?

G2O整理_第5张图片

一步步来看吧。先来看看上图中和vertex有关的第①个类: HyperGraph::Vertex,在g2o的GitHub上(https://github.com/RainerKuemmerle/g2o),它在这个路径

g2o/core/hyper_graph.h

这个 HyperGraph::Vertex 是个abstract vertex,必须通过派生来使用。如下图所示

G2O整理_第6张图片

然后我们看g2o 类结构图中第②个类,我们看到HyperGraph::Vertex 是通过类OptimizableGraph 来继承的, 而OptimizableGraph的定义在

g2o/core/optimizable_graph.h

我们找到vertex定义,发现果然,OptimizableGraph 继承自 HyperGraph,如下图所示

G2O整理_第7张图片

不过,这个OptimizableGraph::Vertex 也非常底层,具体使用时一般都会进行扩展,因此g2o中提供了一个比较通用的适合大部分情况的模板。就是g2o 类结构图中 对应的第③个类:

BaseVertex

那么它在哪里呢? 在这个路径:

g2o/core/base_vertex.h

G2O整理_第8张图片

BaseVertex->OptimizableGraph->HyperGraph::Vertex

继承关系是HyperGraph::Vertex继承OptimizableGraph继承BaseVertex

顶点(Vertex) 参数如何理解?

我们来看一下模板参数 D 和 T,翻译一下上图红框:

D是int 类型的,表示vertex的最小维度,比如3D空间中旋转是3维的,那么这里 D = 3

T是待估计vertex的数据类型,比如用四元数表达三维旋转的话,T就是Quaternion 类型

static const int Dimension = D; ///< dimension of the estimate (minimal) in the manifold space

可以看到这个D并非是顶点(更确切的说是状态变量)的维度,而是其在流形空间(manifold)的最小表示,这里一定要区别开,另外,源码里面也给出了T的作用

typedef T EstimateType;
EstimateType _estimate;

可以看到,这里T就是顶点(状态变量)的类型

如何自己定义顶点?

顶点的基本类型是 BaseVertex,那么下一步关心的就是如何使用了,因为在不同的应用场景(二维空间,三维空间),有不同的待优化变量(位姿,空间点),还涉及不同的优化类型(李代数位姿、李群位姿)

g2o本身内部定义了一些常用的顶点类型

VertexSE2 : public BaseVertex<3, SE2>  //2D pose Vertex, (x,y,theta)
VertexSE3 : public BaseVertex<6, Isometry3>  //6d vector (x,y,z,qx,qy,qz) (注意,我们省略了四元数的w部分)
VertexPointXY : public BaseVertex<2, Vector2>
VertexPointXYZ : public BaseVertex<3, Vector3>
VertexSBAPointXYZ : public BaseVertex<3, Vector3>

// SE3 Vertex parameterized internally with a transformation matrix and externally with its exponential map
//SE3顶点内部用变换矩阵参数化,外部用指数映射参数化
VertexSE3Expmap : public BaseVertex<6, SE3Quat>

// SBACam Vertex, (x,y,z,qw,qx,qy,qz),(x,y,z,qx,qy,qz) (注意,我们省略了四元数的w部分)
//假设qw为正,否则qx、qy、qz作为旋转存在歧义
VertexCam : public BaseVertex<6, SBACam>

// Sim3 Vertex, (x,y,z,qw,qx,qy,qz),7d vector,(x,y,z,qx,qy,qz) 注意,我们省略了四元数的w部分
VertexSim3Expmap : public BaseVertex<7, Sim3>

当然我们可以直接用这些,但是有时候我们需要的顶点类型这里面没有,就得自己定义了。

重新定义顶点一般需要考虑重写如下函数:

virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
virtual void oplusImpl(const number_t* update);
virtual void setToOriginImpl();

这几个是主要要改的地方。我们来看一下他们都是什么意义:

read,write:分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以

setToOriginImpl:顶点重置函数,设定被优化变量的原始值

oplusImpl:顶点更新函数。非常重要的一个函数,主要用于优化过程中增量△x 的计算。我们根据增量方程计算出增量之后,就是通过这个函数对估计值进行调整的,因此这个函数的内容一定要重视。

自己定义 顶点一般是下面的格式:
当我们使用Eigen时,在类中需要重载内存分配的new delete函数时,加上这句话即可:EIGEN_MAKE_ALIGNED_OPERATOR_NEW ,比如:使用g2o优化时,定义一个顶点,需要使用eigen中的一些底层函数

  class myVertex: public g2::BaseVertex<Dim, Type>
  {
      public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW//使用时,加上此句,等于采用eigen中约定的方式重载了该类的new delete等内存分配函数

      myVertex(){}

      virtual void read(std::istream& is) {}
      virtual void write(std::ostream& os) const {}

      virtual void setOriginImpl()
      {
          _estimate = Type();
      }
      virtual void oplusImpl(const double* update) override
      {
          _estimate += /*update*/;
      }
  }

先看一个简单例子,来自十四讲中的曲线拟合,来源如下

ch6/g2o_curve_fitting/main.cpp

// 曲线模型的顶点,模板参数:优化变量维度和数据类型

class CurveFittingVertex: public g2o::BaseVertex<3, Eigen::Vector3d>
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  virtual void setToOriginImpl() // 重置
  {
    _estimate << 0,0,0;
  }

  virtual void oplusImpl( const double* update ) // 更新
  {
    _estimate += Eigen::Vector3d(update);
  }
  // 存盘和读盘:留空
  virtual bool read( istream& in ) {}
  virtual bool write( ostream& out ) const {}
};

我们可以看到下面代码中顶点初值设置为0,更新时也是直接把更新量 update 加上去的,知道为什么吗?

小白:更新不就是 x + △x 吗,这是定义吧

师兄:嗯,对于这个例子是可以直接加,因为顶点类型是Eigen::Vector3d,属于向量,是可以通过加法来更新的。但是但是有些例子就不行,比如下面这个复杂点例子:李代数表示位姿VertexSE3Expmap

来自g2o官网,在这里

g2o/types/sba/types_six_dof_expmap.h

/**

 \* \brief SE3 Vertex parameterized internally with a transformation matrix

 and externally with its exponential map

 */

class G2O_TYPES_SBA_API VertexSE3Expmap : public BaseVertex<6, SE3Quat>{
public:
 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
 VertexSE3Expmap();
 bool read(std::istream& is);
 bool write(std::ostream& os) const;
 virtual void setToOriginImpl() {
  _estimate = SE3Quat();
 }

 virtual void oplusImpl(const number_t* update_) {
  Eigen::Map<const Vector6> update(update_);
  setEstimate(SE3Quat::exp(update)*estimate());    //更新方式
 }
};

第一个参数6 表示内部存储的优化变量维度,这是个6维的李代数

第二个参数是优化变量的类型,这里使用了g2o定义的相机位姿类型:SE3Quat。

在这里可以具体查看g2o/types/slam3d/se3quat.h

它内部使用了四元数表达旋转,然后加上位移来存储位姿,同时支持李代数上的运算,比如对数映射(log函数)、李代数上增量(update函数)等操作

说完了,那我现在问你个问题,为啥这里更新时没有像上面那样直接加上去?

小白:这个表示位姿,好像是不能直接加的我记得,原因有点忘了

师兄:嗯,是不能直接加,原因是变换矩阵不满足加法封闭。那我再问你,为什么相机位姿顶点类VertexSE3Expmap使用了李代数表示相机位姿,而不是使用旋转矩阵和平移矩阵?

其实也是上述原因的拓展:这是因为旋转矩阵是有约束的矩阵,它必须是正交矩阵且行列式为1。使用它作为优化变量就会引入额外的约束条件,从而增大优化的复杂度。而将旋转矩阵通过李群-李代数之间的转换关系转换为李代数表示,就可以把位姿估计变成无约束的优化问题,求解难度降低。

刚才是位姿的例子,下面是三维点的例子,空间点位置 VertexPointXYZ,维度为3,类型是Eigen的Vector3,比较简单,就不解释了

 class G2O_TYPES_SBA_API VertexSBAPointXYZ : public BaseVertex<3, Vector3>
{
 public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW  
  VertexSBAPointXYZ();
  virtual bool read(std::istream& is);
  virtual bool write(std::ostream& os) const;
  virtual void setToOriginImpl() {
   _estimate.fill(0);
  }

  virtual void oplusImpl(const number_t* update)
  {
   Eigen::Map<const Vector3> v(update);
   _estimate += v;
  }
};

如何向图中添加顶点?

往图中增加顶点比较简单,我们还是先看看第一个曲线拟合的例子,setEstimate(type) 函数来设定初始值;setId(int) 定义节点编号

    // 往图中增加顶点
    CurveFittingVertex* v = new CurveFittingVertex();
    v->setEstimate( Eigen::Vector3d(0,0,0) );
    v->setId(0);
    optimizer.addVertex( v );

这个是添加 VertexSBAPointXYZ 的例子,都很容易看懂

    int index = 1;
    for ( const Point3f p:points_3d )   // landmarks
    {
        g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
        point->setId ( index++ );
        point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
        point->setMarginalized ( true ); 
        optimizer.addVertex ( point );
    }

+++

以上为设置顶点,以下为边

+++

初步认识g2o的边

上一次我们讲顶点的时候,还专门去追根溯源查找顶点类之间的继承关系,边其实也是类似的,我们在g2o官方GitHub上这些
g2o/g2o/core/hyper_graph.h
g2o/g2o/core/optimizable_graph.h
g2o/g2o/core/base_edge.h

头文件下就能看到这些继承关系了
G2O整理_第9张图片
BaseUnaryEdge,BaseBinaryEdge,BaseMultiEdge 分别表示一元边,两元边,多元边。
一元边你可以理解为一条边只连接一个顶点,两元边理解为一条边连接两个顶点,也就是我们常见的边啦,多元边理解为一条边可以连接多个(3个以上)顶点

G2O整理_第10张图片

下面我们来看看他们的参数有什么区别?你看主要就是 几个参数:D, E, VertexXi, VertexXj,他们的分别代表:

D 是 int 型,表示测量值的维度 (dimension)
E 表示测量值的数据类型
VertexXi,VertexXj 分别表示不同顶点的类型

比如我们用边表示三维点投影到图像平面的重投影误差,就可以设置输入参数如下:

 BaseBinaryEdge<2, Vector2D, VertexSBAPointXYZ, VertexSE3Expmap>

首先这个是个二元边。第1个2是说测量值是2维的,也就是图像像素坐标x,y的差值,对应测量值的类型是Vector2D,两个顶点也就是优化变量分别是三维点 VertexSBAPointXYZ,和李群位姿VertexSE3Expmap

除了输入参数外,定义边我们通常需要复写一些重要的成员函数

顶点里主要复写了顶点更新函数oplusImpl顶点重置函数setToOriginImpl

virtual bool read(std::istream& is);
virtual bool write(std::ostream& os) const;
virtual void computeError();
virtual void linearizeOplus();

read,write:分别是读盘、存盘函数,一般情况下不需要进行读/写操作的话,仅仅声明一下就可以
computeError函数:非常重要,是使用当前顶点的值计算优化的估计值与真实的测量值之间的误差
linearizeOplus函数:非常重要,是在当前顶点的值下,该误差对优化变量的偏导数,也就是我们说的Jacobian矩阵

除了上面几个成员函数,还有几个重要的成员变量和函数也一并解释一下:

  • _measurement:存储观测值
  • _error:存储computeError() 函数计算的误差
  • __vertices[]:存储顶点信息,比如二元边的话,_vertices[] 的大小为2,存储顺序和调用setVertex(int, vertex) 是设定的int 有关(0 或1)
  • setId(int):来定义边的编号(决定了在H矩阵中的位置)
  • setMeasurement(type) 函数来定义观测值
  • setVertex(int, vertex) 来定义顶点
  • setInformation() 来定义协方差矩阵的逆

如何自定义g2o的边?

 class myEdge: public g2o::BaseBinaryEdge<errorDim, errorType, Vertex1Type, Vertex2Type>
  {
      public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW//使用时,加上此句,等于采用eigen中约定的方式重载了该类的new delete等内存分配函数      
      myEdge(){}     
      virtual bool read(istream& in) {}
      virtual bool write(ostream& out) const {}      
      virtual void computeError() override
      {
          // ...
          _error = _measurement - Something;
      }      
      virtual void linearizeOplus() override
      {
          _jacobianOplusXi(pos, pos) = something;
          // ...         
          /*
          _jocobianOplusXj(pos, pos) = something;
          ...
          */
      }      
      private:
      // data
  }

先来看一个简单例子,地址在
https://github.com/gaoxiang12/slambook/blob/master/ch6/g2o_curve_fitting/main.cpp
这个是个一元边,主要是定义误差函数了,如下所示,你可以发现这个例子基本就是上面例子的一丢丢扩展

// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge: public g2o::BaseUnaryEdge<1,double,CurveFittingVertex>
{
public:
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  CurveFittingEdge( double x ): BaseUnaryEdge(), _x(x) {}
  // 计算曲线模型误差
  void computeError()
  {
    const CurveFittingVertex* v = static_cast<const CurveFittingVertex*> (_vertices[0]);
    const Eigen::Vector3d abc = v->estimate();
    _error(0,0) = _measurement - std::exp( abc(0,0)*_x*_x + abc(1,0)*_x + abc(2,0) ) ;
  }
  virtual bool read( istream& in ) {}
  virtual bool write( ostream& out ) const {}
public:
  double _x; // x 值, y 值为 _measurement
};

下面是一个复杂一点例子,3D-2D点的PnP 问题,也就是最小化重投影误差问题,这个问题非常常见,使用最常见的二元边,弄懂了这个基本跟边相关的代码也差不多都一通百通了

代码在g2o的GitHub上这个地方可以看到
g2o/types/sba/types_six_dof_expmap.h
这里根据自己理解对代码加了注释,方便理解

//继承了BaseBinaryEdge类,观测值是2维,类型Vector2D,顶点分别是三维点、李群位姿
class G2O_TYPES_SBA_API EdgeProjectXYZ2UV : public  BaseBinaryEdge<2, Vector2D, VertexSBAPointXYZ, VertexSE3Expmap>{
  public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    //1. 默认初始化
    EdgeProjectXYZ2UV();
    //2. 计算误差
    void computeError()  {
      //李群相机位姿v1
      const VertexSE3Expmap* v1 = static_cast<const VertexSE3Expmap*>(_vertices[1]);
      // 顶点v2
      const VertexSBAPointXYZ* v2 = static_cast<const VertexSBAPointXYZ*>(_vertices[0]);
      //相机参数
      const CameraParameters * cam
        = static_cast<const CameraParameters *>(parameter(0));
     //误差计算,测量值减去估计值,也就是重投影误差obs-cam
     //估计值计算方法是T*p,得到相机坐标系下坐标,然后在利用camera2pixel()函数得到像素坐标。
      Vector2D obs(_measurement);
      _error = obs-cam->cam_map(v1->estimate().map(v2->estimate()));
    }
    //3. 线性增量函数,也就是雅克比矩阵J的计算方法
    virtual void linearizeOplus();
    //4. 相机参数
    CameraParameters * _cam; 
    bool read(std::istream& is);
    bool write(std::ostream& os) const;
};

有一个地方比较难理解

_error = obs - cam->cam_map(v1->estimate().map(v2->estimate()));

小白:我确实看不懂这一句。。
师兄:其实就是:误差 = 观测 - 投影

捋捋思路。我们先来看看cam_map 函数,它的定义在
g2o/types/sba/types_six_dof_expmap.cpp
cam_map 函数功能是把相机坐标系下三维点(输入)用内参转换为图像坐标(输出),具体代码如下所示

Vector2 CameraParameters::cam_map(const Vector3 & trans_xyz) const {
 Vector2 proj = project2d(trans_xyz);
 Vector2 res;
 res[0] = proj[0]*focal_length + principle_point[0];
 res[1] = proj[1]*focal_length + principle_point[1];
 return res;
}

然后看 .map函数,它的功能是把世界坐标系下三维点变换到相机坐标系,函数在
g2o/types/sim3/sim3.h
具体定义是

   Vector3 map (const Vector3& xyz) const {
    return s*(r*xyz) + t;
   }

因此下面这个代码

v1->estimate().map(v2->estimate())

就是用V1估计的pose把V2代表的三维点,变换到相机坐标系下。

前面主要是对computeError() 的理解,还有一个很重要的函数就是linearizeOplus(),用来定义雅克比矩阵
我摘取了相关代码(来自:g2o/g2o/types/sba/types_six_dof_expmap.cpp),并进行了标注,相信会更容易理解

十四讲第169页中的雅克比矩阵完全是按照书上 式子(7.45)、(7.47)来编程的,不难理解
小白:后面就是直接照抄书上就行,哈哈
G2O整理_第11张图片

G2O整理_第12张图片

如何向图中添加边

一元边的添加方法

下面代码来自GitHub上,仍然是前面曲线拟合的例子
slambook/ch6/g2o_curve_fitting/main.cpp

    // 往图中增加边
    for ( int i=0; i<N; i++ )
    {
        CurveFittingEdge* edge = new CurveFittingEdge( x_data[i] );
        edge->setId(i);							// 设置边的序号
        edge->setVertex( 0, v );                // 设置连接的顶点
        edge->setMeasurement( y_data[i] );      // 观测数值
        edge->setInformation( Eigen::Matrix<double,1,1>::Identity()*1/(w_sigma*w_sigma) ); // 信息矩阵:协方差矩阵之逆
        optimizer.addEdge( edge );
    }

小白:setMeasurement 函数的输入的观测值具体是指什么?
师兄:对于这个曲线拟合,观测值就是实际观测到的数据点。对于视觉SLAM来说,通常就是我们我们观测到的特征点坐标,下面就是一个例子。这个例子比刚才的复杂一点,因为它是二元边,需要用边连接两个顶点
代码来自GitHub上
slambook/ch7/pose_estimation_3d2d.cpp

    index = 1;
    for ( const Point2f p:points_2d )
    {
        g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
        edge->setId ( index );
        edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );
        edge->setVertex ( 1, pose );
        edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );
        edge->setParameterId ( 0,0 );
        edge->setInformation ( Eigen::Matrix2d::Identity() );
        optimizer.addEdge ( edge );
        index++;
    }

小白:这里的setMeasurement函数里的p来自向量points_2d,也就是特征点的图像坐标(x,y)了吧!
师兄:对,这正好呼应我刚才说的。另外,你看setVertex 有两个,一个是 0 和 VertexSBAPointXYZ 类型的顶点,一个是1 和pose。你觉得这里的0和1是什么意思?能否互换呢?

小白:0,1应该是分别指代哪个顶点吧,直觉告诉我不能互换,可能得去查查顶点定义部分的代码
师兄:你的直觉没错!我帮你 查过啦,你看这个是setVertex在g2o官网的定义:

// set the ith vertex on the hyper-edge to the pointer supplied
void setVertex(size_t i, Vertex* v) { assert(i < _vertices.size() && "index out of bounds"); _vertices[i]=v;}

这段代码在
g2o/core/hyper_graph.h
里可以找到。你看 _vertices[i] 里的i就是我们这里的0和1,我们再去看看这里边的类型: g2o::EdgeProjectXYZ2UV
的定义,前面我们也放出来了,就这两句

class G2O_TYPES_SBA_API EdgeProjectXYZ2UV 
.....
 //李群相机位姿v1
const VertexSE3Expmap* v1 = static_cast<const VertexSE3Expmap*>(_vertices[1]);
// 顶点v2
const VertexSBAPointXYZ* v2 = static_cast<const VertexSBAPointXYZ*>(_vertices[0]);

你看 _ vertices[0] 对应的是 VertexSBAPointXYZ 类型的顶点,也就是三维点, _vertices[1] 对应的是VertexSE3Expmap 类型的顶点,也就是位姿pose。

因此前面 1 对应的就应该是 pose,0对应的 应该就是三维点。

6. 设置优化参数,开始执行优化

设置SparseOptimizer的初始化、迭代次数、保存结果等

初始化

SparseOptimizer::initializeOptimization(HyperGraph::EdgeSet& eset)

设置迭代次数,开始执行图优化

SparseOptimizer::optimize(int iterations, bool online)

  • 练习题目:
    题目:给定一组世界坐标系下的3D点(p3d.txt)以及它在相机中对应的坐标(p2d.txt),以及相机的内参矩阵。使用bundle adjustment 方法(g2o库实现)来估计相机的位姿T。初始位姿T为单位矩阵。

代码框架:
链接:https://pan.baidu.com/s/1CiSU-8rDBWurk1ZpzMk_Nw
提取码:ebcj
实现:https://zhuanlan.zhihu.com/p/64587232

你可能感兴趣的:(算法,图论,c++)