搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)

目录

    • 1.导入相关的包
    • 2. 载入数据集
    • 3. 用代码将随机数据样本及对应标签显示出来
    • 4. 未添加防止过拟合手段
    • 5. 添加防止过拟合手段
    • 6. 对比

1.导入相关的包

# 导入相关的包
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow import keras
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPooling2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
from  tensorflow.keras.models import Sequential 

2. 载入数据集

np.set_printoptions(threshold=np.inf)
# 将数据集载入,x_train为训练集数据,y_train为训练集标签,x_test为测试集数据,y_test为测试集标签
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
print("x_train.shape", x_train.shape)
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,使数据和网络结构匹配
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
print("x_train.shape", x_train.shape)
print("x_train.type", type(x_train))
print("y_train.shape", y_train.shape)
print("y_train.type", type(y_train))

3. 用代码将随机数据样本及对应标签显示出来

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(x_train[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[y_train[i]])
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第1张图片

4. 未添加防止过拟合手段

np.set_printoptions(threshold=np.inf)
# 将数据集载入,x_train为训练集数据,y_train为训练集标签,x_test为测试集数据,y_test为测试集标签
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,使数据和网络结构匹配
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# 模型建立
model1 = Sequential()
model1.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model1.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model1.add(MaxPooling2D(pool_size=(2, 2)))
model1.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model1.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model1.add(MaxPooling2D(pool_size=(2, 2)))
model1.add(Flatten())
model1.add(Dense(512, activation='relu'))
model1.add(Dense(128, activation='relu'))
model1.add(Dense(10, activation='softmax'))
# 模型编译
model1.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
               optimizer='adam',
               metrics=['accuracy'])
# 模型展示
model1.summary()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第2张图片

# 模型训练
history1 = model1.fit(x_train, y_train,
                    batch_size=256,
                    epochs=20,
                    verbose=1,
                    validation_data=(x_test, y_test))

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第3张图片

# 模型测试
test_loss1, test_acc1 = model1.evaluate(x_test, y_test, verbose=1)
print('\nTest accuracy:', test_acc1)

在这里插入图片描述

# 绘制训练过程中训练集和测试集合的准确率值
plt.plot(history1.history['accuracy'])
plt.plot(history1.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第4张图片

# 绘制训练过程中训练集和测试集合的损失值
plt.plot(history1.history['loss'])
plt.plot(history1.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第5张图片

5. 添加防止过拟合手段

import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
# 将数据集载入,x_train为训练集数据,y_train为训练集标签,x_test为测试集数据,y_test为测试集标签
fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)  # 给数据增加一个维度,使数据和网络结构匹配
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
# 模型建立
model2 = Sequential()
model2.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model2.add(BatchNormalization())

model2.add(Conv2D(32, kernel_size=(3, 3), activation='relu'))
model2.add(BatchNormalization())
model2.add(MaxPooling2D(pool_size=(2, 2)))
model2.add(Dropout(0.25))

model2.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model2.add(BatchNormalization())
model2.add(Dropout(0.25))

model2.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model2.add(BatchNormalization())
model2.add(MaxPooling2D(pool_size=(2, 2)))
model2.add(Dropout(0.25))

model2.add(Flatten())

model2.add(Dense(512, activation='relu'))
model2.add(BatchNormalization())
model2.add(Dropout(0.5))

model2.add(Dense(128, activation='relu'))
model2.add(BatchNormalization())
model2.add(Dropout(0.5))

model2.add(Dense(10, activation='softmax'))
# 模型编译
model2.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
               optimizer='adam',
               metrics=['accuracy'])
# 模型展示
model2.summary()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第6张图片

# 模型训练
history2 = model2.fit(x_train, y_train,
                      batch_size=256,
                      epochs=20,
                      verbose=1,
                      validation_data=(x_test, y_test))

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第7张图片

# 模型测试
test_loss2, test_acc2 = model2.evaluate(x_test, y_test, verbose=1)
print('\nTest accuracy:', test_acc2)

在这里插入图片描述

# 绘制训练过程中训练集和测试集合的准确率值
plt.plot(history2.history['accuracy'])
plt.plot(history2.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第8张图片

# 绘制训练过程中训练集和测试集合的损失值
plt.plot(history2.history['loss'])
plt.plot(history2.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第9张图片

6. 对比

print('未加防止过拟合手段时的准确率:', test_acc1)
print('添加防止过拟合手段时的准确率:', test_acc2)

在这里插入图片描述

# 绘制训练过程中训练集和测试集合的损失值
plt.plot(history1.history['loss'])
plt.plot(history1.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第10张图片

# 绘制训练过程中训练集和测试集合的损失值
plt.plot(history2.history['loss'])
plt.plot(history2.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()

搭建CNN网络训练fashion-mnist数据集(加入过拟合手段对比)_第11张图片
从以上准确率对比以及两幅loss值的变化图表可以得知,未加防止过拟合手段时,网络出现过拟合现象,添加防止过拟合手段之后,准确率提升,说明添加的防止过拟合手段是有效的。

你可能感兴趣的:(神经网络,cnn,网络,深度学习,tensorflow,神经网络)