阅读计划(寒假)

阅读计划

  • 经典网络阅读

    • 显著性目标检测

      • U2Nethttps://arxiv.org/abs/2005.09007
    • 实例分割

      • Mask-RCNNhttps://arxiv.org/abs/1703.06870
    • transform

      • Attention is all your need https://arxiv.org/abs/1706.03762
      • An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/abs/2010.11929
    • ShuffleNet (v1)(https://arxiv.org/abs/1707.01083) (v2)(https://arxiv.org/abs/1807.11164)

    • GAN(Generative Adversarial Networks) https://arxiv.org/abs/1406.2661

  • 神经网络的量化(了解一下)

    • Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference https://arxiv.org/abs/1712.05877
  • 可解释性分析

    • Learning Deep Features for Discriminative Localization, CVPR2016(https://arxiv.org/abs/1512.04150)
    • Grad-CAM: Visual Explanations From Deep Networks via Gradient-Based Localization ICCV 2017(https://arxiv.org/abs/1610.02391?source=post_page---------------------------)
  • 无人机目标检测 近年论文

    • TPH-YOLOv5https://arxiv.org/pdf/2108.11539.pdf

    • YOLOX(Exceeding YOLO Series in 2021) https://arxiv.org/abs/2107.08430

    • YOLOv7https://arxiv.org/abs/2207.02696

    • 旋转目标检测

      • Simultaneously Localize, Segment and Rank the Camouflaged Objects(同时定位,分割和排序伪装的对象)https://arxiv.org/abs/2103.04011
      • ReDet: A Rotation-equivariant Detector for Aerial Object Detection(ReDet:用于航空物体检测的等速旋转检测器)https://arxiv.org/abs/2103.07733
      • Dense Label Encoding for Boundary Discontinuity Free Rotation Detection(解读-DCL:旋转目标检测新方法)https://arxiv.org/abs/2011.09670
  • 伪装目标检测

    • Camouflaged Object Segmentation with Distraction Mining(带有干扰挖掘的伪装对象分割)https://arxiv.org/pdf/2104.10475.pdf
    • Mutual Graph Learning for Camouflaged Object Detection(用于伪装目标检测的互图学习)https://arxiv.org/abs/2104.02613
    • Uncertainty-aware Joint Salient Object and Camouflaged Object Detection(不确定度联合显着物体和伪装物体检测)https://arxiv.org/abs/2104.02628
  • 无人机目标检测应用到ROS(明年开学配合吊舱学习)

    • https://blog.csdn.net/qq_42722197/article/details/122076763?ops_request_misc=&request_id=&biz_id=102&utm_term=%E6%97%A0%E4%BA%BA%E6%9C%BA%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-6-122076763.nonecase&spm=1018.2226.3001.4187

    • https://blog.csdn.net/Hugh_LAJ/article/details/124902738?ops_request_misc=&request_id=&biz_id=102&utm_term=%E6%97%A0%E4%BA%BA%E6%9C%BA%E7%9B%AE%E6%A0%87%E6%A3%80%E6%B5%8B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-4-124902738.nonecase&spm=1018.2226.3001.4187

阅读顺序

1、transform(2篇)

2、U2Net、Mask-RCNN(2篇)

3、GAN(1篇)

4、旋转目标检测(3篇)

5、TPH-YOLOv5

6、YOLOx、YOLOv6、7(了解其创新点)

7、Shuffle Net(2篇)

8、伪装目标检测(3篇)

9、可解释性分析、量化(了解,3篇)

你可能感兴趣的:(Deel,Learning,目标检测,计算机视觉,深度学习)