借鉴了大佬的,链接找不到了。
预训练模型,如果为空则从头开始,如果使用已有模型继续训练,只是会更好的拟合数据,并不会继承上一个模型,(个人理解)
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
模型的参数配置, 例如yolov5s.yaml,这个文件一般只需要修改一个参数nc,几个类别nc就等于几
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
标签文件,主要是类名和类别数目,图片路径
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
超参数,对模型进行一些微调
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
训练轮数,按自己电脑配置来调-默认300
parser.add_argument('--epochs', type=int, default=300)
批次,按自己电脑配置来调,默认16
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
输入网络的图片尺寸-640,640
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
非矩阵大小图片处理方式,是否采用矩形训练
parser.add_argument('--rect', action='store_true', help='rectangular training')
意外中断后修改此参数可以继续训练
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
不保存模型,默认false
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
不进行test,默认false
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
锚点,不自动调整anchor,默认false
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
超参数进化
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
谷歌云盘bucket,一般不会用到
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
是否缓存图片到内存,加快训练速度
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
对效果不好的类别修改权重
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
gpu和cpu的使用,如果多gpu,default='0,1,2,3',表示四块gpu
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
多尺度训练
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
训练数据集是否只有一个类别
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
优化器adam,默认是SGD
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
是否使用跨卡同步bn操作,再DDP中使用 默认False
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
进程数,能最大化显卡的使用效率,跟电脑的实际配置也有关系
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
保存模型路径
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
数据处理方式,dataloader取数据时, 是否使用collate_fn4代替collate_fn,四合一
parser.add_argument('--quad', action='store_true', help='quad dataloader')
学习率
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
标签平滑, 默认0.0不增强 要增强一般就设为0.1
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
早停机制,训练到一定的epoch,如果模型效果未提升,就让模型提前停止训练。
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
冻结层?冻结模型层数,默认0不冻结,冻结主干网就传10,冻结所有就传24
parser.add_argument('--freeze', type=int, default=0, help='Number of layers to freeze. backbone=10, all=24')
设置多少个epoch保存一次模型
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
为进程编号,分布式训练参数
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
权重与偏差论证
parser.add_argument('--entity', default=None, help='W&B: Entity')
是否上传dataset到wandb tabel(将数据集作为交互式 dsviz表 在浏览器中查看、查询、筛选和分析数据集) 默认False
parser.add_argument('--upload_dataset', action='store_true', help='W&B: Upload dataset as artifact table')
设置界框图像记录间隔
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')