numpy.random.choice的使用

numpy.random.choice(a, size=None, replace=True, p=None)

  • 从a(a只要是ndarray都可以,但必须是一维的)中随机抽取数字,并组成指定大小(size)的数组
  • replace: True表示可以取相同数字,False表示不可以取相同数字
  • 数组p:与数组a相对应,表示取数组a中每个元素的概率,默认选取每个元素的概率相同

除了numpy中的数组,python的list(列表)、tuple(元组)也可以使用

from numpy import random
import numpy as np

random_number = random.choice(5)
print(random_number)

'''
random.choice(5)相当于random.randint(0, 5)
'''

random_number = random.choice(5,3)
print(random_number)

'''
random.choice(5,3)相当于random.randint(0, 5, 3)
'''

list1 = [1, 2, 3, 4, 5]
tuple1 = (2, 3, 4, 5)
array = np.array([4, 3, 2])  # array数组,必须是一维的

result = random.choice(list1, 5)
print(result)

'''
[5 3 3 2 3]
'''

result = random.choice(tuple1, 5)
print(result)

'''
[5 4 5 3 5]
'''

result = random.choice(array, 5)
print(result)

'''
[4 3 3 3 3]
'''

two_dimension = np.arange(10).reshape(2, 5)
print(two_dimension)

'''
[[0 1 2 3 4]
 [5 6 7 8 9]]
'''

result = random.choice(two_dimension, 5)
print(result)

'''
ValueError: a must be 1-dimensional
'''

参数replace:用来设置是否可以取相同的元素

  • True表示可以取相同数字;
  • False表示不可以取相同数字
  • 默认是True
from numpy import random

random_number = random.choice(5, 6, replace=True)  # 可以取相同元素
print(random_number)

'''
[4 3 1 4 1 2]
'''

random_number = random.choice(5, 6, replace=False)  # 不以取相同元素
print(random_number)

'''
ValueError: Cannot take a larger sample than population when 'replace=False'
'''

参数p:p实际上是一个数组,大小(size)应该与指定的a相同,用来规定选取a中每个元素的概率,默认为概率相同

from numpy import random

prob = ['唐舞桐', '霍雨浩', '古月娜', '唐舞麟', '蓝轩宇', '白秀秀']
random_prob = random.choice(prob, 5, p=[0.4, 0.2, 0.1, 0.1, 0.1, 0.1])
print(random_prob)

'''
['唐舞桐' '蓝轩宇' '霍雨浩' '古月娜' '唐舞桐']
'''

参考:python,numpy中np.random.choice()的用法详解及其参考代码

你可能感兴趣的:(python,numpy,python)