ros下超声波避障仿真

一、添加超声波仿真模型

1.在文件夹下创建 ultrasonic.xacro 文件,在文件内添加以下代码:




    
        
        
          
            
            
               
            
          

          
            
            
                
            
          

          
             
             
             
          
        
  
      
        
          
            0 0 0 0 0 0
            true
            10
            
        
              
                
                  8
                  1
                  -0.14
                  0.14
                
                
                  8
                  1
                  -0.14
                  0.14
                
              
              
                0.05
                3
                0.1
              
            
      
            
              0.01
              true
              0.1
              ultrasonic_sensor
              ultrasonic_sensor
              ultrasound 
            
          
        

    

2、在机器人配置文件(urdf)中添加以下代码:


  
    
    
    
  

  

3、运行机器人模型,效果如下:

gazebo下效果:

ros下超声波避障仿真_第1张图片

 运行 rostopic list 可以查看已经发布了超声波话题:

 运行 rostopic echo /ultrasonic_sensor 可以查看超声波传回来的数据:

ros下超声波避障仿真_第2张图片

 二、ros超声波避障仿真实验

本次实验中仅使用了一个超声波,安装在机器人正前方。

1、创建一个catkin_ws/src,然后

catkin_create_pkg ultrasonic_obstacle_avoidance roscpp sensor_msgs geometry_msgs

cd ultrasonic_obstacle_avoidance/src
touch main.cpp

cd ../../..
catkin_make

2、打开main.cpp,输入如下代码:


#include "ros/ros.h"
#include "sensor_msgs/Range.h"
#include "geometry_msgs/Twist.h"
 
#define  STATUS_A    0x01     //距离小于min_range,停止
 
//global variable
geometry_msgs::Twist twist_cmd;
ros::Publisher twist_pub;

const double warn_range = 1.5;
 
double range_array[1];
//double range_array[3];                 //save three sonar value
uint8_t flag = 0x00;

double default_period_hz = 10;
double default_linear_x = 0.5;         // (m/s)
double V_Angle = 0.0; 

void ultrasonic_sensor_callback(const sensor_msgs::Range::ConstPtr& msg)
{
    range_array[0] = msg->range;
    ROS_INFO("range:[%f]", msg->range);
}
 
void publishTwistCmd(double linear_x, double angular_z)
{
    twist_cmd.linear.x = linear_x;
    twist_cmd.linear.y = 0.0;
    twist_cmd.linear.z = 0.0;
 
    twist_cmd.angular.x = 0.0;
    twist_cmd.angular.y = 0.0;
    twist_cmd.angular.z = angular_z;
 
    twist_pub.publish(twist_cmd);
}

void checkSonarRange(double ultrasonic_sensor)
{
   unsigned char flag = 0;
   if( ultrasonic_sensor <= warn_range )  //距离 < warn_range 停车
   {
       flag = 0x01;
       publishTwistCmd(0.0 , 0.0);
   }
   else
   {
      publishTwistCmd(default_linear_x, V_Angle);
   }
 
}


int main(int argc, char **argv)
{
    ros::init(argc, argv, "ultrasonic_obstacle_avoidance_node");
    ros::NodeHandle handle;
    ros::Rate loop_rate = default_period_hz;
 
    ros::Subscriber sub_ultrasonic_sensor = handle.subscribe("/ultrasonic_sensor", 100, ultrasonic_sensor_callback);
 
    twist_pub = handle.advertise("/cmd_vel", 10);
 
    while(ros::ok())
    {
       checkSonarRange(range_array[0]);
       ros::spinOnce();
       loop_rate.sleep();
    }
 
    return 0;
}

3、修改CMakeLists.txt配置文件,按照如下图所示修改:

cmake_minimum_required(VERSION 3.0.2)
project(ultrasonic_obstacle_avoidance)

## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)

## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
  geometry_msgs
  roscpp
  sensor_msgs
)

## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)


## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()

################################################
## Declare ROS messages, services and actions ##
################################################

## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend tag for "message_generation"
##   * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependency has been pulled in
##     but can be declared for certainty nonetheless:
##     * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)

## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )

## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )

## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )

## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   geometry_msgs#   sensor_msgs
# )

################################################
## Declare ROS dynamic reconfigure parameters ##
################################################

## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
##   * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
##   * add "dynamic_reconfigure" to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * uncomment the "generate_dynamic_reconfigure_options" section below
##     and list every .cfg file to be processed

## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
#   cfg/DynReconf1.cfg
#   cfg/DynReconf2.cfg
# )

###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
#  INCLUDE_DIRS include
#  LIBRARIES ultrasonic_obstacle_avoidance
#  CATKIN_DEPENDS geometry_msgs roscpp sensor_msgs
#  DEPENDS system_lib
)

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
# include
  ${catkin_INCLUDE_DIRS}
)

## Declare a C++ library
# add_library(${PROJECT_NAME}
#   src/${PROJECT_NAME}/ultrasonic_obstacle_avoidance.cpp
# )

## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
add_executable(${PROJECT_NAME}_node src/main.cpp)

## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")

## Add cmake target dependencies of the executable
## same as for the library above
add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Specify libraries to link a library or executable target against
target_link_libraries(${PROJECT_NAME}_node
  ${catkin_LIBRARIES}
# )

#############
## Install ##
#############

# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html

## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# catkin_install_python(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )

## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )

## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )

#############
## Testing ##
#############

## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_ultrasonic_obstacle_avoidance.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()

## Add folders to be run by python nosetests
# catkin_add_nosetests(test)
)

4、修改package.xml文件,按照如下图所示修改:



  ultrasonic_obstacle_avoidance
  0.0.0
  The ultrasonic_obstacle_avoidance package

  
  
  
  liang


  
  
  
  TODO


  
  
  
  


  
  
  
  


  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  catkin
  geometry_msgs
  roscpp
  sensor_msgs
  geometry_msgs
  roscpp
  sensor_msgs
  roscpp
  sensor_msgs
  geometry_msgs
  sensor_msgs
  geometry_msgs
  roscpp
  sensor_msgs


  
  
    

  

5、接下来重新编译:

cd catkin_ws
catkin_make
source devel/setup.bash

6、编译完成后就可以来运行查看效果了,首先运行机器人模型和gazebo仿真软件,然后在启动打印超声波数据的节点:

rosrun ultrasonic_obstacle_avoidance ultrasonic_obstacle_avoidance_node

运行后可以看到机器人距离障碍物1.5米处停下。

你可能感兴趣的:(自动驾驶,人工智能,机器学习)