《视觉SLAM十四讲》-7.2 手写ORB特征

//
// Created by xiang on 18-11-25.
//

#include 
#include 
#include 
#include 

using namespace std;

// global variables定义图片路径全局变量
string first_file = "./1.png";
string second_file = "./2.png";

// 32 bit unsigned int, will have 8, 8x32=256
typedef vector DescType; // Descriptor type

/**
 * compute descriptor of orb keypoints
 * @param img input image
 * @param keypoints detected fast keypoints
 * @param descriptors descriptors
 *
 * NOTE: if a keypoint goes outside the image boundary (8 pixels), descriptors will not be computed and will be left as
 * empty
 */
void ComputeORB(const cv::Mat &img, vector &keypoints, vector &descriptors);

/**
 * brute-force match two sets of descriptors
 * @param desc1 the first descriptor
 * @param desc2 the second descriptor
 * @param matches matches of two images
 */
void BfMatch(const vector &desc1, const vector &desc2, vector &matches);

int main(int argc, char **argv) {

    // 加载图片
    //从全局变量路径中读取图片
    cv::Mat first_image = cv::imread(first_file, 0);                  
    cv::Mat second_image = cv::imread(second_file, 0);
    //检查图片指针是否为空
    assert(first_image.data != nullptr && second_image.data != nullptr);          

    //ORB-Oriented FAST and Rotated BRIEF


    chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
    //ORB使用FAST算法检测特征点
    //OpenCV中的ORB采用了图像金字塔来解决尺度变换一致性
    //****自定义ComputeORB函数来描述ORB特征点,并旋转使其具备旋转尺度不变性

    // ORB提取图1特征threshold=40
    vector keypoints1;
    cv::FAST(first_image, keypoints1, 40);    //利用FAST从图1中提取关键点keypoints1
    vector descriptor1;                               //定义图1的描述子
    //根据图1和FAST提取的关键点,通过ORB设置描述子descriptor1
    ComputeORB(first_image, keypoints1, descriptor1);     
    //ORB提取图2特征
    vector keypoints2;
    vector descriptor2;
    cv::FAST(second_image, keypoints2, 40);
    ComputeORB(second_image, keypoints2, descriptor2);

    //计算特征提取耗时
    chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
    chrono::duration time_used = chrono::duration_cast>(t2 - t1);
    cout << "extract ORB cost = " << time_used.count() << " seconds. " << endl;

    // 进行匹配
    vector matches;
    t1 = chrono::steady_clock::now();
    BfMatch(descriptor1, descriptor2, matches);
    t2 = chrono::steady_clock::now();
    time_used = chrono::duration_cast>(t2 - t1);
    cout << "match ORB cost = " << time_used.count() << " seconds. " << endl;
    cout << "matches: " << matches.size() << endl;

    // plot the matches
    cv::Mat image_show;
    cv::drawMatches(first_image, keypoints1, second_image, keypoints2, matches, image_show);
    cv::imshow("matches", image_show);
    cv::imwrite("matches.png", image_show);
    cv::waitKey(0);

    cout << "done." << endl;
    return 0;
}

#pragma region ORB_pattern[256 * 4]相当于在以关键点为中心[-13,12]的范围内,随机选点对p,q;进行关键点的向量构建
//这个变量里的数字,在ORBSLAM的代码中总共是256行,代表了256个点对儿,也就是每一个都代表了一对点的坐标,
//如第一行表示点q1(8,-3) 和点 q2(9,5), 接下来就是要对比这两个坐标对应的像素值的大小;
int ORB_pattern[256 * 4] = {
        8, -3, 9, 5/*mean (0), correlation (0)*/,
        4, 2, 7, -12/*mean (1.12461e-05), correlation (0.0437584)*/,
        -11, 9, -8, 2/*mean (3.37382e-05), correlation (0.0617409)*/,
        7, -12, 12, -13/*mean (5.62303e-05), correlation (0.0636977)*/,
        2, -13, 2, 12/*mean (0.000134953), correlation (0.085099)*/,
        1, -7, 1, 6/*mean (0.000528565), correlation (0.0857175)*/,
        -2, -10, -2, -4/*mean (0.0188821), correlation (0.0985774)*/,
        -13, -13, -11, -8/*mean (0.0363135), correlation (0.0899616)*/,
        -13, -3, -12, -9/*mean (0.121806), correlation (0.099849)*/,
        10, 4, 11, 9/*mean (0.122065), correlation (0.093285)*/,
        -13, -8, -8, -9/*mean (0.162787), correlation (0.0942748)*/,
        -11, 7, -9, 12/*mean (0.21561), correlation (0.0974438)*/,
        7, 7, 12, 6/*mean (0.160583), correlation (0.130064)*/,
        -4, -5, -3, 0/*mean (0.228171), correlation (0.132998)*/,
        -13, 2, -12, -3/*mean (0.00997526), correlation (0.145926)*/,
        -9, 0, -7, 5/*mean (0.198234), correlation (0.143636)*/,
        12, -6, 12, -1/*mean (0.0676226), correlation (0.16689)*/,
        -3, 6, -2, 12/*mean (0.166847), correlation (0.171682)*/,
        -6, -13, -4, -8/*mean (0.101215), correlation (0.179716)*/,
        11, -13, 12, -8/*mean (0.200641), correlation (0.192279)*/,
        4, 7, 5, 1/*mean (0.205106), correlation (0.186848)*/,
        5, -3, 10, -3/*mean (0.234908), correlation (0.192319)*/,
        3, -7, 6, 12/*mean (0.0709964), correlation (0.210872)*/,
        -8, -7, -6, -2/*mean (0.0939834), correlation (0.212589)*/,
        -2, 11, -1, -10/*mean (0.127778), correlation (0.20866)*/,
        -13, 12, -8, 10/*mean (0.14783), correlation (0.206356)*/,
        -7, 3, -5, -3/*mean (0.182141), correlation (0.198942)*/,
        -4, 2, -3, 7/*mean (0.188237), correlation (0.21384)*/,
        -10, -12, -6, 11/*mean (0.14865), correlation (0.23571)*/,
        5, -12, 6, -7/*mean (0.222312), correlation (0.23324)*/,
        5, -6, 7, -1/*mean (0.229082), correlation (0.23389)*/,
        1, 0, 4, -5/*mean (0.241577), correlation (0.215286)*/,
        9, 11, 11, -13/*mean (0.00338507), correlation (0.251373)*/,
        4, 7, 4, 12/*mean (0.131005), correlation (0.257622)*/,
        2, -1, 4, 4/*mean (0.152755), correlation (0.255205)*/,
        -4, -12, -2, 7/*mean (0.182771), correlation (0.244867)*/,
        -8, -5, -7, -10/*mean (0.186898), correlation (0.23901)*/,
        4, 11, 9, 12/*mean (0.226226), correlation (0.258255)*/,
        0, -8, 1, -13/*mean (0.0897886), correlation (0.274827)*/,
        -13, -2, -8, 2/*mean (0.148774), correlation (0.28065)*/,
        -3, -2, -2, 3/*mean (0.153048), correlation (0.283063)*/,
        -6, 9, -4, -9/*mean (0.169523), correlation (0.278248)*/,
        8, 12, 10, 7/*mean (0.225337), correlation (0.282851)*/,
        0, 9, 1, 3/*mean (0.226687), correlation (0.278734)*/,
        7, -5, 11, -10/*mean (0.00693882), correlation (0.305161)*/,
        -13, -6, -11, 0/*mean (0.0227283), correlation (0.300181)*/,
        10, 7, 12, 1/*mean (0.125517), correlation (0.31089)*/,
        -6, -3, -6, 12/*mean (0.131748), correlation (0.312779)*/,
        10, -9, 12, -4/*mean (0.144827), correlation (0.292797)*/,
        -13, 8, -8, -12/*mean (0.149202), correlation (0.308918)*/,
        -13, 0, -8, -4/*mean (0.160909), correlation (0.310013)*/,
        3, 3, 7, 8/*mean (0.177755), correlation (0.309394)*/,
        5, 7, 10, -7/*mean (0.212337), correlation (0.310315)*/,
        -1, 7, 1, -12/*mean (0.214429), correlation (0.311933)*/,
        3, -10, 5, 6/*mean (0.235807), correlation (0.313104)*/,
        2, -4, 3, -10/*mean (0.00494827), correlation (0.344948)*/,
        -13, 0, -13, 5/*mean (0.0549145), correlation (0.344675)*/,
        -13, -7, -12, 12/*mean (0.103385), correlation (0.342715)*/,
        -13, 3, -11, 8/*mean (0.134222), correlation (0.322922)*/,
        -7, 12, -4, 7/*mean (0.153284), correlation (0.337061)*/,
        6, -10, 12, 8/*mean (0.154881), correlation (0.329257)*/,
        -9, -1, -7, -6/*mean (0.200967), correlation (0.33312)*/,
        -2, -5, 0, 12/*mean (0.201518), correlation (0.340635)*/,
        -12, 5, -7, 5/*mean (0.207805), correlation (0.335631)*/,
        3, -10, 8, -13/*mean (0.224438), correlation (0.34504)*/,
        -7, -7, -4, 5/*mean (0.239361), correlation (0.338053)*/,
        -3, -2, -1, -7/*mean (0.240744), correlation (0.344322)*/,
        2, 9, 5, -11/*mean (0.242949), correlation (0.34145)*/,
        -11, -13, -5, -13/*mean (0.244028), correlation (0.336861)*/,
        -1, 6, 0, -1/*mean (0.247571), correlation (0.343684)*/,
        5, -3, 5, 2/*mean (0.000697256), correlation (0.357265)*/,
        -4, -13, -4, 12/*mean (0.00213675), correlation (0.373827)*/,
        -9, -6, -9, 6/*mean (0.0126856), correlation (0.373938)*/,
        -12, -10, -8, -4/*mean (0.0152497), correlation (0.364237)*/,
        10, 2, 12, -3/*mean (0.0299933), correlation (0.345292)*/,
        7, 12, 12, 12/*mean (0.0307242), correlation (0.366299)*/,
        -7, -13, -6, 5/*mean (0.0534975), correlation (0.368357)*/,
        -4, 9, -3, 4/*mean (0.099865), correlation (0.372276)*/,
        7, -1, 12, 2/*mean (0.117083), correlation (0.364529)*/,
        -7, 6, -5, 1/*mean (0.126125), correlation (0.369606)*/,
        -13, 11, -12, 5/*mean (0.130364), correlation (0.358502)*/,
        -3, 7, -2, -6/*mean (0.131691), correlation (0.375531)*/,
        7, -8, 12, -7/*mean (0.160166), correlation (0.379508)*/,
        -13, -7, -11, -12/*mean (0.167848), correlation (0.353343)*/,
        1, -3, 12, 12/*mean (0.183378), correlation (0.371916)*/,
        2, -6, 3, 0/*mean (0.228711), correlation (0.371761)*/,
        -4, 3, -2, -13/*mean (0.247211), correlation (0.364063)*/,
        -1, -13, 1, 9/*mean (0.249325), correlation (0.378139)*/,
        7, 1, 8, -6/*mean (0.000652272), correlation (0.411682)*/,
        1, -1, 3, 12/*mean (0.00248538), correlation (0.392988)*/,
        9, 1, 12, 6/*mean (0.0206815), correlation (0.386106)*/,
        -1, -9, -1, 3/*mean (0.0364485), correlation (0.410752)*/,
        -13, -13, -10, 5/*mean (0.0376068), correlation (0.398374)*/,
        7, 7, 10, 12/*mean (0.0424202), correlation (0.405663)*/,
        12, -5, 12, 9/*mean (0.0942645), correlation (0.410422)*/,
        6, 3, 7, 11/*mean (0.1074), correlation (0.413224)*/,
        5, -13, 6, 10/*mean (0.109256), correlation (0.408646)*/,
        2, -12, 2, 3/*mean (0.131691), correlation (0.416076)*/,
        3, 8, 4, -6/*mean (0.165081), correlation (0.417569)*/,
        2, 6, 12, -13/*mean (0.171874), correlation (0.408471)*/,
        9, -12, 10, 3/*mean (0.175146), correlation (0.41296)*/,
        -8, 4, -7, 9/*mean (0.183682), correlation (0.402956)*/,
        -11, 12, -4, -6/*mean (0.184672), correlation (0.416125)*/,
        1, 12, 2, -8/*mean (0.191487), correlation (0.386696)*/,
        6, -9, 7, -4/*mean (0.192668), correlation (0.394771)*/,
        2, 3, 3, -2/*mean (0.200157), correlation (0.408303)*/,
        6, 3, 11, 0/*mean (0.204588), correlation (0.411762)*/,
        3, -3, 8, -8/*mean (0.205904), correlation (0.416294)*/,
        7, 8, 9, 3/*mean (0.213237), correlation (0.409306)*/,
        -11, -5, -6, -4/*mean (0.243444), correlation (0.395069)*/,
        -10, 11, -5, 10/*mean (0.247672), correlation (0.413392)*/,
        -5, -8, -3, 12/*mean (0.24774), correlation (0.411416)*/,
        -10, 5, -9, 0/*mean (0.00213675), correlation (0.454003)*/,
        8, -1, 12, -6/*mean (0.0293635), correlation (0.455368)*/,
        4, -6, 6, -11/*mean (0.0404971), correlation (0.457393)*/,
        -10, 12, -8, 7/*mean (0.0481107), correlation (0.448364)*/,
        4, -2, 6, 7/*mean (0.050641), correlation (0.455019)*/,
        -2, 0, -2, 12/*mean (0.0525978), correlation (0.44338)*/,
        -5, -8, -5, 2/*mean (0.0629667), correlation (0.457096)*/,
        7, -6, 10, 12/*mean (0.0653846), correlation (0.445623)*/,
        -9, -13, -8, -8/*mean (0.0858749), correlation (0.449789)*/,
        -5, -13, -5, -2/*mean (0.122402), correlation (0.450201)*/,
        8, -8, 9, -13/*mean (0.125416), correlation (0.453224)*/,
        -9, -11, -9, 0/*mean (0.130128), correlation (0.458724)*/,
        1, -8, 1, -2/*mean (0.132467), correlation (0.440133)*/,
        7, -4, 9, 1/*mean (0.132692), correlation (0.454)*/,
        -2, 1, -1, -4/*mean (0.135695), correlation (0.455739)*/,
        11, -6, 12, -11/*mean (0.142904), correlation (0.446114)*/,
        -12, -9, -6, 4/*mean (0.146165), correlation (0.451473)*/,
        3, 7, 7, 12/*mean (0.147627), correlation (0.456643)*/,
        5, 5, 10, 8/*mean (0.152901), correlation (0.455036)*/,
        0, -4, 2, 8/*mean (0.167083), correlation (0.459315)*/,
        -9, 12, -5, -13/*mean (0.173234), correlation (0.454706)*/,
        0, 7, 2, 12/*mean (0.18312), correlation (0.433855)*/,
        -1, 2, 1, 7/*mean (0.185504), correlation (0.443838)*/,
        5, 11, 7, -9/*mean (0.185706), correlation (0.451123)*/,
        3, 5, 6, -8/*mean (0.188968), correlation (0.455808)*/,
        -13, -4, -8, 9/*mean (0.191667), correlation (0.459128)*/,
        -5, 9, -3, -3/*mean (0.193196), correlation (0.458364)*/,
        -4, -7, -3, -12/*mean (0.196536), correlation (0.455782)*/,
        6, 5, 8, 0/*mean (0.1972), correlation (0.450481)*/,
        -7, 6, -6, 12/*mean (0.199438), correlation (0.458156)*/,
        -13, 6, -5, -2/*mean (0.211224), correlation (0.449548)*/,
        1, -10, 3, 10/*mean (0.211718), correlation (0.440606)*/,
        4, 1, 8, -4/*mean (0.213034), correlation (0.443177)*/,
        -2, -2, 2, -13/*mean (0.234334), correlation (0.455304)*/,
        2, -12, 12, 12/*mean (0.235684), correlation (0.443436)*/,
        -2, -13, 0, -6/*mean (0.237674), correlation (0.452525)*/,
        4, 1, 9, 3/*mean (0.23962), correlation (0.444824)*/,
        -6, -10, -3, -5/*mean (0.248459), correlation (0.439621)*/,
        -3, -13, -1, 1/*mean (0.249505), correlation (0.456666)*/,
        7, 5, 12, -11/*mean (0.00119208), correlation (0.495466)*/,
        4, -2, 5, -7/*mean (0.00372245), correlation (0.484214)*/,
        -13, 9, -9, -5/*mean (0.00741116), correlation (0.499854)*/,
        7, 1, 8, 6/*mean (0.0208952), correlation (0.499773)*/,
        7, -8, 7, 6/*mean (0.0220085), correlation (0.501609)*/,
        -7, -4, -7, 1/*mean (0.0233806), correlation (0.496568)*/,
        -8, 11, -7, -8/*mean (0.0236505), correlation (0.489719)*/,
        -13, 6, -12, -8/*mean (0.0268781), correlation (0.503487)*/,
        2, 4, 3, 9/*mean (0.0323324), correlation (0.501938)*/,
        10, -5, 12, 3/*mean (0.0399235), correlation (0.494029)*/,
        -6, -5, -6, 7/*mean (0.0420153), correlation (0.486579)*/,
        8, -3, 9, -8/*mean (0.0548021), correlation (0.484237)*/,
        2, -12, 2, 8/*mean (0.0616622), correlation (0.496642)*/,
        -11, -2, -10, 3/*mean (0.0627755), correlation (0.498563)*/,
        -12, -13, -7, -9/*mean (0.0829622), correlation (0.495491)*/,
        -11, 0, -10, -5/*mean (0.0843342), correlation (0.487146)*/,
        5, -3, 11, 8/*mean (0.0929937), correlation (0.502315)*/,
        -2, -13, -1, 12/*mean (0.113327), correlation (0.48941)*/,
        -1, -8, 0, 9/*mean (0.132119), correlation (0.467268)*/,
        -13, -11, -12, -5/*mean (0.136269), correlation (0.498771)*/,
        -10, -2, -10, 11/*mean (0.142173), correlation (0.498714)*/,
        -3, 9, -2, -13/*mean (0.144141), correlation (0.491973)*/,
        2, -3, 3, 2/*mean (0.14892), correlation (0.500782)*/,
        -9, -13, -4, 0/*mean (0.150371), correlation (0.498211)*/,
        -4, 6, -3, -10/*mean (0.152159), correlation (0.495547)*/,
        -4, 12, -2, -7/*mean (0.156152), correlation (0.496925)*/,
        -6, -11, -4, 9/*mean (0.15749), correlation (0.499222)*/,
        6, -3, 6, 11/*mean (0.159211), correlation (0.503821)*/,
        -13, 11, -5, 5/*mean (0.162427), correlation (0.501907)*/,
        11, 11, 12, 6/*mean (0.16652), correlation (0.497632)*/,
        7, -5, 12, -2/*mean (0.169141), correlation (0.484474)*/,
        -1, 12, 0, 7/*mean (0.169456), correlation (0.495339)*/,
        -4, -8, -3, -2/*mean (0.171457), correlation (0.487251)*/,
        -7, 1, -6, 7/*mean (0.175), correlation (0.500024)*/,
        -13, -12, -8, -13/*mean (0.175866), correlation (0.497523)*/,
        -7, -2, -6, -8/*mean (0.178273), correlation (0.501854)*/,
        -8, 5, -6, -9/*mean (0.181107), correlation (0.494888)*/,
        -5, -1, -4, 5/*mean (0.190227), correlation (0.482557)*/,
        -13, 7, -8, 10/*mean (0.196739), correlation (0.496503)*/,
        1, 5, 5, -13/*mean (0.19973), correlation (0.499759)*/,
        1, 0, 10, -13/*mean (0.204465), correlation (0.49873)*/,
        9, 12, 10, -1/*mean (0.209334), correlation (0.49063)*/,
        5, -8, 10, -9/*mean (0.211134), correlation (0.503011)*/,
        -1, 11, 1, -13/*mean (0.212), correlation (0.499414)*/,
        -9, -3, -6, 2/*mean (0.212168), correlation (0.480739)*/,
        -1, -10, 1, 12/*mean (0.212731), correlation (0.502523)*/,
        -13, 1, -8, -10/*mean (0.21327), correlation (0.489786)*/,
        8, -11, 10, -6/*mean (0.214159), correlation (0.488246)*/,
        2, -13, 3, -6/*mean (0.216993), correlation (0.50287)*/,
        7, -13, 12, -9/*mean (0.223639), correlation (0.470502)*/,
        -10, -10, -5, -7/*mean (0.224089), correlation (0.500852)*/,
        -10, -8, -8, -13/*mean (0.228666), correlation (0.502629)*/,
        4, -6, 8, 5/*mean (0.22906), correlation (0.498305)*/,
        3, 12, 8, -13/*mean (0.233378), correlation (0.503825)*/,
        -4, 2, -3, -3/*mean (0.234323), correlation (0.476692)*/,
        5, -13, 10, -12/*mean (0.236392), correlation (0.475462)*/,
        4, -13, 5, -1/*mean (0.236842), correlation (0.504132)*/,
        -9, 9, -4, 3/*mean (0.236977), correlation (0.497739)*/,
        0, 3, 3, -9/*mean (0.24314), correlation (0.499398)*/,
        -12, 1, -6, 1/*mean (0.243297), correlation (0.489447)*/,
        3, 2, 4, -8/*mean (0.00155196), correlation (0.553496)*/,
        -10, -10, -10, 9/*mean (0.00239541), correlation (0.54297)*/,
        8, -13, 12, 12/*mean (0.0034413), correlation (0.544361)*/,
        -8, -12, -6, -5/*mean (0.003565), correlation (0.551225)*/,
        2, 2, 3, 7/*mean (0.00835583), correlation (0.55285)*/,
        10, 6, 11, -8/*mean (0.00885065), correlation (0.540913)*/,
        6, 8, 8, -12/*mean (0.0101552), correlation (0.551085)*/,
        -7, 10, -6, 5/*mean (0.0102227), correlation (0.533635)*/,
        -3, -9, -3, 9/*mean (0.0110211), correlation (0.543121)*/,
        -1, -13, -1, 5/*mean (0.0113473), correlation (0.550173)*/,
        -3, -7, -3, 4/*mean (0.0140913), correlation (0.554774)*/,
        -8, -2, -8, 3/*mean (0.017049), correlation (0.55461)*/,
        4, 2, 12, 12/*mean (0.01778), correlation (0.546921)*/,
        2, -5, 3, 11/*mean (0.0224022), correlation (0.549667)*/,
        6, -9, 11, -13/*mean (0.029161), correlation (0.546295)*/,
        3, -1, 7, 12/*mean (0.0303081), correlation (0.548599)*/,
        11, -1, 12, 4/*mean (0.0355151), correlation (0.523943)*/,
        -3, 0, -3, 6/*mean (0.0417904), correlation (0.543395)*/,
        4, -11, 4, 12/*mean (0.0487292), correlation (0.542818)*/,
        2, -4, 2, 1/*mean (0.0575124), correlation (0.554888)*/,
        -10, -6, -8, 1/*mean (0.0594242), correlation (0.544026)*/,
        -13, 7, -11, 1/*mean (0.0597391), correlation (0.550524)*/,
        -13, 12, -11, -13/*mean (0.0608974), correlation (0.55383)*/,
        6, 0, 11, -13/*mean (0.065126), correlation (0.552006)*/,
        0, -1, 1, 4/*mean (0.074224), correlation (0.546372)*/,
        -13, 3, -9, -2/*mean (0.0808592), correlation (0.554875)*/,
        -9, 8, -6, -3/*mean (0.0883378), correlation (0.551178)*/,
        -13, -6, -8, -2/*mean (0.0901035), correlation (0.548446)*/,
        5, -9, 8, 10/*mean (0.0949843), correlation (0.554694)*/,
        2, 7, 3, -9/*mean (0.0994152), correlation (0.550979)*/,
        -1, -6, -1, -1/*mean (0.10045), correlation (0.552714)*/,
        9, 5, 11, -2/*mean (0.100686), correlation (0.552594)*/,
        11, -3, 12, -8/*mean (0.101091), correlation (0.532394)*/,
        3, 0, 3, 5/*mean (0.101147), correlation (0.525576)*/,
        -1, 4, 0, 10/*mean (0.105263), correlation (0.531498)*/,
        3, -6, 4, 5/*mean (0.110785), correlation (0.540491)*/,
        -13, 0, -10, 5/*mean (0.112798), correlation (0.536582)*/,
        5, 8, 12, 11/*mean (0.114181), correlation (0.555793)*/,
        8, 9, 9, -6/*mean (0.117431), correlation (0.553763)*/,
        7, -4, 8, -12/*mean (0.118522), correlation (0.553452)*/,
        -10, 4, -10, 9/*mean (0.12094), correlation (0.554785)*/,
        7, 3, 12, 4/*mean (0.122582), correlation (0.555825)*/,
        9, -7, 10, -2/*mean (0.124978), correlation (0.549846)*/,
        7, 0, 12, -2/*mean (0.127002), correlation (0.537452)*/,
        -1, -6, 0, -11/*mean (0.127148), correlation (0.547401)*/
};

#pragma endregion

// 计算关键点的描述子向量,
/*
 * 1、因为以关键点为中心,边长为16×16的方形区域灰度计算关键点角度信息;
 *   所以先去掉所有在离图像边缘在8个像素范围内的像素,否则计算关键点角度会出错;
 *2、计算关键点周围16×16的领域质心,并计算关键点角度的cos,和sin
 *3、根据指定随机规则,选择关键点周围的随机点对计算随机点对的亮度强弱,
 *   如果第一个像素pp比第二个qq亮,则为描述符中的相应位分配值 1,否则分配值 0
 *4、将计算的关键点描述子向量加入到描述子向量集合中
 */
void ComputeORB(const cv::Mat &img, vector &keypoints, vector &descriptors) {
    const int half_patch_size = 8;
    const int half_boundary = 16;
    int bad_points = 0;
    for (auto &kp: keypoints) {
        //剔除边缘关键点,边缘的像素值为16,即将图像上靠近四边16个像素的边框区域内所有特征点都去掉,
        //因为要以关键点为中心,边长为16×16的方形区域灰度计算关键点角度信息;
        if (kp.pt.x < half_boundary || kp.pt.y < half_boundary ||
            kp.pt.x >= img.cols - half_boundary || kp.pt.y >= img.rows - half_boundary) {
            // outside
            bad_points++;
            descriptors.push_back({});
            continue;
        }

        //计算灰度质心
        float m01 = 0, m10 = 0;
        //从左到右遍历以关键点为中心的,半径为8的像素点,共256个像素点
        //从左到右遍历以关键点为中心的,半径为8的像素点,共256个像素点
        for (int dx = -half_patch_size; dx < half_patch_size; ++dx)                     
        {
            //从上到下遍历
            for (int dy = -half_patch_size; dy < half_patch_size; ++dy)             
            {
                //img.at(y,x),参数是点所在的行列而不是点的坐标
                //计算区域内的像素坐标,关键点坐标(x,y)+偏移坐标(dx,dy)
                uchar pixel = img.at(kp.pt.y + dy, kp.pt.x + dx); 
                //计算x方向灰度总权重,注意:此处使用dx,非X方向坐标值     
                m01 += dx * pixel;   
                //计算y方向灰度总权重                                               
                m10 += dy * pixel;                                                  
            }
        }

        // 计算关键点角度信息 arc tan(m01/m10);
         //这里计算灰度质心与关键点构成的直角三角形的长边,用于后面计算角度;没有通过除总灰度值计算质心位置 avoid divide by zero
        float m_sqrt = sqrt(m01 * m01 + m10 * m10) + 1e-18;                      
        float sin_theta = m01 / m_sqrt;             //计算关键点角度信息sin
        float cos_theta = m10 / m_sqrt;             //计算关键点角度信息cos

        // 计算关键点描述子向量,原理参考https://www.cnblogs.com/alexme/p/11345701.html
        //8个描述子向量,每个向量中的元素占据32位,初始化为0;每个描述子使用256位二进制数进行描述
        DescType desc(8, 0);                
        for (int i = 0; i < 8; i++) {               //处理每个向量
            uint32_t d = 0;
            for (int k = 0; k < 32; k++) {          //处理每一位
                //在256*4的随机数中随机选一行作为p(idx1,idx2),q(idx3,idx4),,i,k递增,所以所有点选择特征向量的规制一致,才能比较
                int idx_pq = i * 8 + k;             
                //ORB_pattern含义是在16*16图像块中按高斯分布选取点对,选出来的p、q是未经过旋转的
                //相当于在以关键点为中心[-13,12]的范围内,随机选点对p,q;进行关键点的向量构建
                cv::Point2f p(ORB_pattern[idx_pq * 4], ORB_pattern[idx_pq * 4 + 1]);
                cv::Point2f q(ORB_pattern[idx_pq * 4 + 2], ORB_pattern[idx_pq * 4 + 3]);

                // 计算关键点随机选择的特征点对旋转后的位置
                //pp和qq利用了特征点的方向,计算了原始随机选出的p,q点旋转后的位置pp,qq,体现了ORB的旋转不变性
                cv::Point2f pp = cv::Point2f(cos_theta * p.x - sin_theta * p.y, sin_theta * p.x + cos_theta * p.y)
                                 + kp.pt;  
                 //之所以此处需要+ kp.pt的原因是上述随机点对选择是以关键点为中心选择的,需要加关键点坐标获取按照指定规则随机选择后的随机点对绝对图像坐标
                cv::Point2f qq = cv::Point2f(cos_theta * q.x - sin_theta * q.y, sin_theta * q.x + cos_theta * q.y)
                                 + kp.pt;
                //计算两个旋转后的关键点对应随机点对的灰度值大小,构建关键点的特征向量
                if (img.at(pp.y, pp.x) < img.at(qq.y, qq.x)) {
                    //如果第一个像素pp比第二个qq亮,则为描述符中的相应位分配值 1,否则分配值 0
                    d |= 1 << k;            
                }
            }
            desc[i] = d;
        }
        //将获取的关键点描述子向量添加进描述子集合中
        descriptors.push_back(desc);        
    }

    cout << "bad/total: " << bad_points << "/" << keypoints.size() << endl;
}

// brute-force matching
void BfMatch(const vector &desc1, const vector &desc2, vector &matches) {
    const int d_max = 40;

    for (size_t i1 = 0; i1 < desc1.size(); ++i1) {
        if (desc1[i1].empty()) continue;
        cv::DMatch m{i1, 0, 256};
        for (size_t i2 = 0; i2 < desc2.size(); ++i2) {
            if (desc2[i2].empty()) continue;
            int distance = 0;
            //此处k8×下行u32=256个二进制描述子,即一个关键点的描述子
            for (int k = 0; k < 8; k++) {   
                //将选择的两个随机特征的描述子按位进行异或运算,从而计算两个描述子之间的汉明顿距离
                distance += _mm_popcnt_u32(desc1[i1][k] ^ desc2[i2][k]);
            }
            if (distance < d_max && distance < m.distance) {
                m.distance = distance;
                m.trainIdx = i2;
            }
        }
        if (m.distance < d_max) {
            matches.push_back(m);
        }
    }
}

本文代码注释参考自:视觉SLAM实践入门——(10)特征提取和匹配(修复源码中的段错误bug) - it610.com;

关于关键点查找和描述子匹配过程,可以参考以下这篇文章,讲的比较清楚:详细解读ORBSLAM中的描述子提取过程_啊哈包子-CSDN博客_orbslam描述子

根据以上博文和自己的理解进行再整理,作为自己学习回顾记录参考,如有侵权,请联系及时删除,谢谢;

你可能感兴趣的:(视觉SLAM,自动驾驶,计算机视觉)