PaddleOCR C++(三)---动态库返回识别结果及矩形位置

学更好的别人,

做更好的自己。

——《微卡智享》

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第1张图片

本文长度为3932,预计阅读7分钟

前言

《PaddleOCR C++学习笔记(二)》尝试做图像的分割,结果都效果不明显,所以这篇我们从OCR识别这里来处理,将返回的识别字符和对应的识别矩形框都显示出来,用于区分识别的效果。

54705054c0be44e5f4144e8378b6ebf9.png

实现效果

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第2张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第3张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第4张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第5张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第6张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第7张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第8张图片

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第9张图片

上面的就是实现的效果图,从上面可以看出,识别的位置及识别的字符串也都在原图中绘制出来了,知道了对应的位置,比返回一串整体的字符串要效果好不少。

相应的里面也可以看出,识别的效果还是有待加强,几张图中,做过透视变换后的这一张图识别的效果是最好的,所有的数字都识别了出来。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第10张图片

而同样的做了透视变换,下面这两张:

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第11张图片

上面这个可以看出,定位文本时数字1只截取了其中一部分,所以识别时被认成T了,而定位的文本框中也有重复的,像23这一个框定位了一次,结果又把234678这个框定位了一下,并且只识别出来278。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第12张图片

而上面这个图中,定位出来识别的效果还不错,除了数字5识别为5.0,只要识别出来的都对,但是同样,数字10,13,15,11还有3都没有检测出来。

其实这也看出来,如果真的是想识别效果好,还是需要自己训练模型,这个OCR应该是对文本的效果更好。

当然本篇的重点其实还是对PaddleOCR的动态为封装,实现外部调用好返回的是字符串加对应位置的列表,接下来就是正篇开始。

代码实现

0d53d90a271aa8371aa02a32d4952a2a.png

微卡智享

PaddleOCR动态库部分修改

01

定义结构体

要返回对应的数组列表,首先就是要在动态库中定义名为OCRTextRect结构体,位置定义在了自己新建的ocr_export.h里。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第13张图片

struct OCRTextRect {
public:
  char* OCRText;  //识别的信息
  int ptx, pty;       //Rect的起始坐标
  int width, height;  //Rect的宽和高


  OCRTextRect() : OCRText(""), ptx(0), pty(0), width(0), height(0)
  {
  }
};

结构体中定义了返回的字符串char*,然后加上了矩形Rect的起始坐标点X,Y,剩下的就是宽和高的长度。

这里要强调一个重点,为什么会用结构体?在动态库中,千万不要使用STL库的东西,容易发生内存的重分配问题,原因STL库全都是基于模板的,模板是在编译器生成的。这也就是说同一份STL代码在不同动态库中有各自的实现,如果只是方法多了一份自然就没问题,但是部分STL容器里面存有一些静态变量,因此多个实现会导致多份静态变量,然后导致某些方法的调用出现差别,最终导致内存操作异常而崩溃。

因此像STL库中std::vector,std::string这些都不能使用。

02

增加动态库外部调用函数

增加了一个PaddleOCRTextRect外部调用的函数。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第14张图片


ocr_export.cpp中的实现方法:

DLLEXPORT int PaddleOCRTextRect(cv::Mat& img, OCRTextRect* resptr)
{
  std::vector> str_res;
  std::string tmpstr;


  if (!img.data) {
    return 0;
  }
  PaddleOCR::OCRConfig config = readOCRConfig();
  //打印config参数
  config.PrintConfigInfo();


  //图像检测文本
  PaddleOCR::DBDetector det(config.det_model_dir, config.use_gpu, config.gpu_id,
    config.gpu_mem, config.cpu_math_library_num_threads,
    config.use_mkldnn, config.max_side_len, config.det_db_thresh,
    config.det_db_box_thresh, config.det_db_unclip_ratio,
    config.use_polygon_score, config.visualize,
    config.use_tensorrt, config.use_fp16);


  PaddleOCR::Classifier* cls = nullptr;
  if (config.use_angle_cls == true) {
    cls = new PaddleOCR::Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
      config.gpu_mem, config.cpu_math_library_num_threads,
      config.use_mkldnn, config.cls_thresh,
      config.use_tensorrt, config.use_fp16);
  }


  PaddleOCR::CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
    config.gpu_mem, config.cpu_math_library_num_threads,
    config.use_mkldnn, config.char_list_file,
    config.use_tensorrt, config.use_fp16);


  //检测文本框
  std::vector>> boxes;
  det.Run(img, boxes);
  //OCR识别
  str_res = rec.RunOCR(boxes, img, cls);


  try
  {
    for (int i = 0; i < str_res.size(); ++i) {
      char* reschar = new char[str_res[i].first.length() + 1];
      str_res[i].first.copy(reschar, std::string::npos);
      resptr[i].OCRText = reschar;
      resptr[i].ptx = str_res[i].second.x;
      resptr[i].pty = str_res[i].second.y;
      resptr[i].width = str_res[i].second.width;
      resptr[i].height = str_res[i].second.height;


      //std::cout << "cout:" << str_res[i].first << std::endl;
    }
  }
  catch (const std::exception& ex)
  {
    std::cout << ex.what() << std::endl;
  }


  return str_res.size();
}

方法中返回的int是具体识别的数组中的个数,在外部调用时可以用这个来判断,因为传入参数中OCRTextRect的指针,需要外部调用前先分配的数组的大小,所以外面的定义数组大小可能会定义更大,返回的int可以知道具体是识别了多少个矩形框。

03

ocr_rec.cpp的修改

前面文章说了ocr_rec.cpp里面是识别的方法,里面通过RunOCR函数进入,其中GetRotateCropImage的函数,用于处理生成的boxes的矩形点,然后截图这里面的图形进行OCR识别的。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第15张图片

在不动原来的GetRotateCropImage函数方法,我们再重写一个GetRotateCropImage,加入一个cv::Rect的参数用于生成截取的矩形。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第16张图片

cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat& srcimage, std::vector> box, cv::Rect& rect)
{
    cv::Mat image;
    srcimage.copyTo(image);
    std::vector> points = box;


    int x_collect[4] = { box[0][0], box[1][0], box[2][0], box[3][0] };
    int y_collect[4] = { box[0][1], box[1][1], box[2][1], box[3][1] };
    int left = int(*std::min_element(x_collect, x_collect + 4));
    int right = int(*std::max_element(x_collect, x_collect + 4));
    int top = int(*std::min_element(y_collect, y_collect + 4));
    int bottom = int(*std::max_element(y_collect, y_collect + 4));


    cv::Mat img_crop;
    rect = cv::Rect(left, top, right - left, bottom - top);
    image(rect).copyTo(img_crop);


    for (int i = 0; i < points.size(); i++) {
        points[i][0] -= left;
        points[i][1] -= top;
    }


    int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
        pow(points[0][1] - points[1][1], 2)));
    int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
        pow(points[0][1] - points[3][1], 2)));


    cv::Point2f pts_std[4];
    pts_std[0] = cv::Point2f(0., 0.);
    pts_std[1] = cv::Point2f(img_crop_width, 0.);
    pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
    pts_std[3] = cv::Point2f(0.f, img_crop_height);


    cv::Point2f pointsf[4];
    pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
    pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
    pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
    pointsf[3] = cv::Point2f(points[3][0], points[3][1]);


    cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);


    cv::Mat dst_img;
    cv::warpPerspective(img_crop, dst_img, M,
        cv::Size(img_crop_width, img_crop_height),
        cv::BORDER_REPLICATE);


    if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
        cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
        cv::transpose(dst_img, srcCopy);
        cv::flip(srcCopy, srcCopy, 0);
        return srcCopy;
    }
    else {
        return dst_img;
    }
}

同样的RunOCR方法原来是void没有返回函数的,这里面我们我们也重写了这个方法返回为std::vector>,用于最终处理存放到结构体中。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第17张图片

std::vector> CRNNRecognizer::RunOCR(std::vector>> boxes, cv::Mat& img, Classifier* cls)
{
    cv::Mat srcimg;
    img.copyTo(srcimg);
    cv::Mat crop_img;
    cv::Mat resize_img;


    std::cout << "The predicted text is :" << std::endl;
    int index = 0;
    std::vector> vtsresstr;
    std::vector str_res;
    cv::Rect tmprect;
    for (int i = 0; i < boxes.size(); i++) {
        crop_img = GetRotateCropImage(srcimg, boxes[i], tmprect);


        if (cls != nullptr) {
            crop_img = cls->Run(crop_img);
        }


        float wh_ratio = float(crop_img.cols) / float(crop_img.rows);


        this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);


        this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
            this->is_scale_);


        std::vector input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);


        this->permute_op_.Run(&resize_img, input.data());


        // Inference.
        auto input_names = this->predictor_->GetInputNames();
        auto input_t = this->predictor_->GetInputHandle(input_names[0]);
        input_t->Reshape({ 1, 3, resize_img.rows, resize_img.cols });
        input_t->CopyFromCpu(input.data());
        this->predictor_->Run();


        std::vector predict_batch;
        auto output_names = this->predictor_->GetOutputNames();
        auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
        auto predict_shape = output_t->shape();


        int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
            std::multiplies());
        predict_batch.resize(out_num);


        output_t->CopyToCpu(predict_batch.data());


        // ctc decode
        int argmax_idx;
        int last_index = 0;
        float score = 0.f;
        int count = 0;
        float max_value = 0.0f;


        for (int n = 0; n < predict_shape[1]; n++) {
            argmax_idx =
                int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                    &predict_batch[(n + 1) * predict_shape[2]]));
            max_value =
                float(*std::max_element(&predict_batch[n * predict_shape[2]],
                    &predict_batch[(n + 1) * predict_shape[2]]));


            if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
                score += max_value;
                count += 1;
                str_res.push_back(label_list_[argmax_idx]);
            }
            last_index = argmax_idx;
        }
        score /= count;
        cv::String tmpstr;
        //for (int i = 0; i < str_res.size(); i++) {
        //    tmpstr += str_res[i];
        //    std::cout << tmpstr;
        //}
        for (int i = index; i < str_res.size(); i++) {
            tmpstr += str_res[i];
            std::cout << tmpstr;
        }
        index = str_res.size();
        std::cout << "\tscore: " << score << std::endl;
        std::pair tmppair;
        tmppair.first = tmpstr;
        tmppair.second = tmprect;
        vtsresstr.push_back(tmppair);
    }
    return vtsresstr;
}

这样最终PaddleOCRTextRect外部调用里面就可以给OCRTextRect结构体数组进行赋值了。

调用程序修改

01

定义结构体

和动态库里面一样,在调用动态库的程序里面也要先定义OCRTextRect的结构体。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第18张图片

02

加入调用函数

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第19张图片

加入typedef定义动态库的调用函数,并写一个外部调用的方法。

03

其实的修改

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第20张图片

再增加两个函数,实现将返回的OCRTextRect结构体数组转换为vector容器,插入的过程按照从上到下,从左到右的顺序进行排序,所以又写了一个二分查找的算法。

完整的PaddleOCRAPI

PaddleOCRApi.h

#pragma once
//通过调用windowsAPI 来加载和卸载DLL  
#include   
#include 
#include 
#include 
#include 
#include 
#include "..\..\Utils\CvUtils.h"


struct OCRTextRect {
public:
  char* OCRText;  //识别的信息
  int ptx, pty;       //Rect的起始坐标
  int width, height;  //Rect的宽和高


  OCRTextRect() {
    OCRText = nullptr;
    ptx = 0;
    pty = 0;
    width = 0;
    height = 0;
  }
};


class PaddleOcrApi
{
private:
  typedef char*(*DllFun)(cv::Mat&);


  typedef int (*DllFunOCRTextRect)(cv::Mat&, OCRTextRect*);


  //二分查找
  static int binarySearch(std::vector>& vtsrect, const OCRTextRect rect);


public:
  static std::string GetPaddleOCRText(cv::Mat& src);


  static std::string GetPaddleOCRTextRect(cv::Mat& src, std::vector>& vtsocr);


  //排序OCRTextRect转为vector容器
  static std::vector> SortRectPair(const OCRTextRect* vtsrect, const int count);
  //透视变换获取图像
  static cv::Mat GetPerspectiveMat(cv::Mat& src, int iterations = 1);


  //分割数据华容道图像
  static std::vector GetNumMat(cv::Mat& src);


  // string的编码方式为utf8,则采用:
  static std::string wstr2utf8str(const std::wstring& str);
  static std::wstring utf8str2wstr(const std::string& str);


  // string的编码方式为除utf8外的其它编码方式,可采用:
  static std::string wstr2str(const std::wstring& str, const std::string& locale);
  static std::wstring str2wstr(const std::string& str, const std::string& locale);


};




PaddleOCRAPI.cpp

#include "PaddleOcrApi.h"


//二分查找定位当前插入序号
int PaddleOcrApi::binarySearch(std::vector>& vtsrect, const OCRTextRect rect)
{
  int left = 0;
  int right = vtsrect.size() - 1;
  int res = 0;


  std::pair lastitem("", cv::Rect());


  while (left <= right) {
    int mid = left + (right - left) / 2;
    //获取中位值
    std::pair item(vtsrect[mid].first,vtsrect[mid].second);


    //判断最后值是否相等
    if (item.first == lastitem.first && item.second.x == lastitem.second.x
      && item.second.y == lastitem.second.y) {
      res = mid;
      break;
    }
    else if (rect.pty+rect.height > item.second.y + item.second.height / 2) {
      lastitem.first = item.first;
      lastitem.second = item.second;
      left = mid + 1;
    }
    else if (rect.ptx < item.second.x) {
      lastitem.first = item.first;
      lastitem.second = item.second;
      right = mid - 1;
    }
    else if (rect.ptx >= item.second.x) {
      lastitem.first = item.first;
      lastitem.second = item.second;
      left = mid + 1;
    }
  }


  return res;
}


std::string PaddleOcrApi::GetPaddleOCRText(cv::Mat& src)
{
  std::string resstr;
  DllFun funName;
  HINSTANCE hdll;


  try
  {
    hdll = LoadLibrary(L"PaddleOCRExport.dll");
    if (hdll == NULL)
    {
      resstr = "加载不到PaddleOCRExport.dll动态库!";
      FreeLibrary(hdll);
      return resstr;
    }


    funName = (DllFun)GetProcAddress(hdll, "PaddleOCRText");
    if (funName == NULL)
    {
      resstr = "找不到PaddleOCRText函数!";
      FreeLibrary(hdll);
      return resstr;
    }


    resstr = funName(src);
    // 将utf-8的string转换为wstring
    std::wstring wtxt = utf8str2wstr(resstr);
    // 再将wstring转换为gbk的string
    resstr = wstr2str(wtxt, "Chinese");


    FreeLibrary(hdll);
  }
  catch (const std::exception& ex)
  {
    resstr = ex.what();
    return "Error:" + resstr;
    FreeLibrary(hdll);
  }


  return resstr;
}


std::string PaddleOcrApi::GetPaddleOCRTextRect(cv::Mat& src, std::vector>& vtsocr)
{
  std::string resstr;
  DllFunOCRTextRect funName;
  HINSTANCE hdll;


  try
  {
    hdll = LoadLibrary(L"PaddleOCRExport.dll");
    if (hdll == NULL)
    {
      resstr = "加载不到PaddleOCRExport.dll动态库!";
      FreeLibrary(hdll);
      return resstr;
    }


    funName = (DllFunOCRTextRect)GetProcAddress(hdll, "PaddleOCRTextRect");
    if (funName == NULL)
    {
      resstr = "找不到PaddleOCRText函数!";
      FreeLibrary(hdll);
      return resstr;
    }


    OCRTextRect vts[100];


    int count = funName(src, vts);


    std::cout << "size:" << std::to_string(count) << std::endl;
    
    for (int i = 0; i< count; ++i) {
      std::cout << vts[i].OCRText<< std::endl;
      std::cout << "Rect:x=" << std::to_string(vts[i].ptx);
      std::cout << " y=" << std::to_string(vts[i].pty);
      std::cout << " width=" << std::to_string(vts[i].width);
      std::cout << " height=" << std::to_string(vts[i].height) << std::endl;


      OCRTextRect tmprect = vts[i];
        // 将utf-8的string转换为wstring
      std::wstring wtxt = utf8str2wstr(tmprect.OCRText);
      // 再将wstring转换为gbk的string
      std::string tmpstr = wstr2str(wtxt, "Chinese");


      // 通过二分查找排序插入到vtsocr的容器中
      int index = binarySearch(vtsocr, vts[i]);
      vtsocr.insert(vtsocr.begin() + index, std::pair(tmpstr,
        cv::Rect(tmprect.ptx, tmprect.pty, tmprect.width, tmprect.height)));
    }
    resstr = "OK";


    FreeLibrary(hdll);
  }
  catch (const std::exception& ex)
  {
    resstr = ex.what();
    return "Error:" + resstr;
    FreeLibrary(hdll);
  }
  return resstr;
}


//排序OCRTextRect
std::vector> PaddleOcrApi::SortRectPair(const OCRTextRect* vtsrect, const int count)
{
  std::vector> resvts;


  return std::vector>();
}


cv::Mat PaddleOcrApi::GetPerspectiveMat(cv::Mat& src, int iterations)
{
  cv::Mat tmpsrc, cannysrc, resultMat;
  src.copyTo(tmpsrc);


  //高斯滤波
  cv::GaussianBlur(tmpsrc, tmpsrc, cv::Size(5, 5), 0.5, 0.5);


  int srcArea = tmpsrc.size().area();
  float maxArea = 0;
  int maxAreaidx = -1;


  std::vector channels;
  cv::Mat B_src, G_src, R_src, dstmat;
  cv::split(tmpsrc, channels);


  int minthreshold = 120, maxthreshold = 200;


  //B进行Canny
  //大津法求阈值
  CvUtils::GetMatMinMaxThreshold(channels[0], minthreshold, maxthreshold, 1);
  std::cout << "OTSUmin:" << minthreshold << "  OTSUmax:" << maxthreshold << std::endl;
  //Canny边缘提取
  cv::Canny(channels[0], B_src, minthreshold, maxthreshold);


  //大津法求阈值
  CvUtils::GetMatMinMaxThreshold(channels[1], minthreshold, maxthreshold, 1);
  std::cout << "OTSUmin:" << minthreshold << "  OTSUmax:" << maxthreshold << std::endl;
  //Canny边缘提取
  Canny(channels[1], G_src, minthreshold, maxthreshold);


  //大津法求阈值
  CvUtils::GetMatMinMaxThreshold(channels[2], minthreshold, maxthreshold, 1);
  std::cout << "OTSUmin:" << minthreshold << "  OTSUmax:" << maxthreshold << std::endl;
  //Canny边缘提取
  Canny(channels[2], R_src, minthreshold, maxthreshold);




  bitwise_or(B_src, G_src, dstmat);
  bitwise_or(R_src, dstmat, dstmat);
  //CvUtils::SetShowWindow(dstmat, "dstmat", 700, 20);
  //imshow("dstmat", dstmat);




  std::vector> contours;
  std::vector hierarchy;
  findContours(dstmat, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);


  cv::Mat dstcontour = cv::Mat::zeros(cannysrc.size(), CV_8SC3);
  cv::Mat tmpcontour;
  dstcontour.copyTo(tmpcontour);


  //定义拟合后的多边形数组
  std::vector> vtshulls(contours.size());


  for (int i = 0; i < contours.size(); ++i) {
    //判断轮廓形状,不是四边形的忽略掉
    double lensval = 0.01 * arcLength(contours[i], true);
    std::vector convexhull;
    approxPolyDP(cv::Mat(contours[i]), convexhull, lensval, true);


    //拟合的多边形存放到定义的数组中
    vtshulls[i] = convexhull;


    //不是四边形的过滤掉
    if (convexhull.size() != 4) continue;


    //求出最小旋转矩形
    cv::RotatedRect rRect = minAreaRect(contours[i]);
    //更新最小旋转矩形中面积最大的值
    if (rRect.size.height == 0) continue;


    if (rRect.size.area() > maxArea && rRect.size.area() > srcArea * 0.1
      && !CvUtils::CheckRectBorder(src, rRect)) {
      maxArea = rRect.size.area();
      maxAreaidx = i;
    }
  }


  //找到符合条码的最大面积的轮廓进行处理
  if (maxAreaidx >= 0) {
    std::cout << "iterations:" << iterations << "  maxAreaidx:" << maxAreaidx << std::endl;
    //获取最小旋转矩形
    cv::RotatedRect rRect = minAreaRect(contours[maxAreaidx]);
    cv::Point2f vertices[4];
    //重新排序矩形坐标点,按左上,右上,右下,左下顺序
    CvUtils::SortRotatedRectPoints(vertices, rRect);


    std::cout << "Rect:" << vertices[0] << vertices[1] << vertices[2] << vertices[3] << std::endl;


    //根据获得的4个点画线
    for (int k = 0; k < 4; ++k) {
      line(dstcontour, vertices[k], vertices[(k + 1) % 4], cv::Scalar(255, 0, 0));
    }


    //计算四边形的四点坐标
    cv::Point2f rPoints[4];
    CvUtils::GetPointsFromRect(rPoints, vertices, vtshulls[maxAreaidx]);
    for (int k = 0; k < 4; ++k) {
      line(dstcontour, rPoints[k], rPoints[(k + 1) % 4], cv::Scalar(255, 255, 255));
    }




    //采用离最小矩形四个点最近的重新设置范围,将所在区域的点做直线拟合再看看结果
    cv::Point2f newPoints[4];
    CvUtils::GetPointsFromFitline(newPoints, rPoints, vertices);
    for (int k = 0; k < 4; ++k) {
      line(dstcontour, newPoints[k], newPoints[(k + 1) % 4], cv::Scalar(255, 100, 255));
    }




    //根据最小矩形和多边形拟合的最大四个点计算透视变换矩阵    
    cv::Point2f rectPoint[4];
    //计算旋转矩形的宽和高
    float rWidth = CvUtils::CalcPointDistance(vertices[0], vertices[1]);
    float rHeight = CvUtils::CalcPointDistance(vertices[1], vertices[2]);
    //计算透视变换的左上角起始点
    float left = dstcontour.cols;
    float top = dstcontour.rows;
    for (int i = 0; i < 4; ++i) {
      if (left > newPoints[i].x) left = newPoints[i].x;
      if (top > newPoints[i].y) top = newPoints[i].y;
    }


    rectPoint[0] = cv::Point2f(left, top);
    rectPoint[1] = rectPoint[0] + cv::Point2f(rWidth, 0);
    rectPoint[2] = rectPoint[1] + cv::Point2f(0, rHeight);
    rectPoint[3] = rectPoint[0] + cv::Point2f(0, rHeight);




    //计算透视变换矩阵    
    cv::Mat warpmatrix = getPerspectiveTransform(rPoints, rectPoint);
    cv::Mat resultimg;
    //透视变换
    warpPerspective(src, resultimg, warpmatrix, resultimg.size(), cv::INTER_LINEAR);


    /*CvUtils::SetShowWindow(resultimg, "resultimg", 200, 20);
    imshow("resultimg", resultimg);*/


    //载取透视变换后的图像显示出来
    cv::Rect cutrect = cv::Rect(rectPoint[0], rectPoint[2]);
    resultMat = resultimg(cutrect);


    //CvUtils::SetShowWindow(resultMat, "resultMat", 600, 20);
    //cv::imshow("resultMat", resultMat);


    iterations--;
    if (iterations > 0) {
      resultMat = GetPerspectiveMat(resultMat, iterations);
    }
  }
  else {
    src.copyTo(resultMat);
  }
  return resultMat;
}


std::vector PaddleOcrApi::GetNumMat(cv::Mat& src)
{
  std::vector vts;
  cv::Mat tmpsrc, tmpgray, threshsrc;
  src.copyTo(tmpsrc);


  //使用拉普拉斯算子实现图像对比度提高
  cv::Mat Laplancekernel = (cv::Mat_(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
  cv::Mat imgLaplance, resimg;
  cv::filter2D(tmpsrc, imgLaplance, CV_32F, Laplancekernel);
  tmpsrc.convertTo(resimg, CV_32F);
  resimg = resimg - imgLaplance;
  resimg.convertTo(tmpsrc, CV_8UC3);
  CvUtils::SetShowWindow(tmpsrc, "resimg", 700, 20);
  cv::imshow("resimg", tmpsrc);




  cv::cvtColor(tmpsrc, tmpgray, cv::COLOR_BGR2GRAY);


  //二值化
  cv::threshold(tmpgray, threshsrc, 0, 255, cv::THRESH_BINARY_INV | cv::THRESH_OTSU);


  CvUtils::SetShowWindow(threshsrc, "threshsrc", 700, 20);
  cv::imshow("threshsrc", threshsrc);


  cv::Mat dst;
  cv::distanceTransform(threshsrc, dst, cv::DIST_L1, 3, 5);
  CvUtils::SetShowWindow(dst, "dst1", 700, 20);
  cv::imshow("dst1", dst);


  cv::normalize(dst, dst, 0, 1, cv::NORM_MINMAX);
  CvUtils::SetShowWindow(dst, "dst2", 500, 20);
  cv::imshow("dst2", dst);


  cv::threshold(dst, dst, 0.1, 1, cv::THRESH_BINARY);
  CvUtils::SetShowWindow(dst, "dst3", 500, 20);
  cv::imshow("dst3", dst);




  //std::vector lines;
  //cv::HoughLinesP(dst_8u, lines, 1, CV_PI / 180.0, 200, 50, 40);


  //cv::Scalar color = cv::Scalar(0, 0, 255);
  //for (int i = 0; i < lines.size(); ++i) {
  //  cv::Vec4f line = lines[i];
  //  cv::putText(tmpsrc, std::to_string(i), cv::Point(line[0], line[1]), 1, 1, color);
  //  cv::line(tmpsrc, cv::Point(line[0], line[1]), cv::Point(line[2], line[3]), color);
  //}
  //CvUtils::SetShowWindow(tmpsrc, "tmpsrc", 300, 20);
  //cv::imshow("tmpsrc", tmpsrc);


  //开运算
  cv::Mat morph1, morph2, morphcalc;
  cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 1));
  cv::morphologyEx(dst, morph1, cv::MORPH_CLOSE, kernel, cv::Point(-1, -1), 1);
  CvUtils::SetShowWindow(morph1, "morph1", 500, 20);
  cv::imshow("morph1", morph1);


  //cv::morphologyEx(threshsrc, morph2, cv::MORPH_TOPHAT, kernel);
  //CvUtils::SetShowWindow(morph2, "morph2", 500, 20);
  //cv::imshow("morph2", morph2);


  //morphcalc = threshsrc - morph2;
  //CvUtils::SetShowWindow(morphcalc, "morphcalc", 500, 20);
  //cv::imshow("morphcalc", morphcalc);




  cv::Mat dst_8u;
  morph1.convertTo(dst_8u, CV_8U);
  CvUtils::SetShowWindow(dst_8u, "dst_8u", 300, 20);
  cv::imshow("dst_8u", dst_8u);
  std::vector> contours;
  std::vector hierarchy;
  findContours(dst_8u, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);
  定义拟合后的多边形数组
  std::vector> vtshulls;


  //for (int i = 0; i < contours.size(); ++i) {
  //  //cv::drawContours(tmpsrc, contours, i, cv::Scalar(0, 0, 255));
  //  //判断轮廓形状,不是四边形的忽略掉
  //  double lensval = 0.01 * arcLength(contours[i], true);
  //  std::vector convexhull;
  //  approxPolyDP(cv::Mat(contours[i]), convexhull, lensval, true);


  //  //不是四边形的过滤掉
  //  if (convexhull.size() != 4) continue;
  //  vtshulls.push_back(convexhull);
  //}


  std::cout << "contourssize:" << contours.size() << std::endl;
  cv::Mat dstimg = cv::Mat::zeros(src.size(), CV_8UC1);
  for (int i = 0; i < contours.size(); ++i) {
    cv::drawContours(dstimg, contours, static_cast(i), cv::Scalar::all(255), -1);
  }


  CvUtils::SetShowWindow(dstimg, "dstimg", 300, 20);
  cv::imshow("dstimg", dstimg);




  return vts;
}


std::string PaddleOcrApi::wstr2utf8str(const std::wstring& str)
{
  static std::wstring_convert > strCnv;
  return strCnv.to_bytes(str);
}


std::wstring PaddleOcrApi::utf8str2wstr(const std::string& str)
{
  static std::wstring_convert< std::codecvt_utf8 > strCnv;
  return strCnv.from_bytes(str);
}


std::string PaddleOcrApi::wstr2str(const std::wstring& str, const std::string& locale)
{
  typedef std::codecvt_byname F;
  static std::wstring_convert strCnv(new F(locale));
  return strCnv.to_bytes(str);
}


std::wstring PaddleOcrApi::str2wstr(const std::string& str, const std::string& locale)
{
  typedef std::codecvt_byname F;
  static std::wstring_convert strCnv(new F(locale));
  return strCnv.from_bytes(str);
}


04

main主程序中的调用

      std::vector> vtsocrs;
      PaddleOcrApi::GetPaddleOCRTextRect(resultMat, vtsocrs);


      //输出识别文字
      //if (!resultMat.empty()) {
      //  putText::putTextZH(resultMat, resstr.data(), cv::Point(20, 20), cv::Scalar(0, 0, 255), 1);
      //  cv::putText(resultMat, resstr, cv::Point(20, 50), 1, 1, cv::Scalar(0, 0, 255));
      //}
      std::cout << "输出:" << std::endl;
      for (int i = 0; i < vtsocrs.size(); ++i) {
        int B = cv::theRNG().uniform(0, 255);
        int G = cv::theRNG().uniform(0, 255);
        int R = cv::theRNG().uniform(0, 255);


        cv::Rect tmprect = vtsocrs[i].second;
        std::string tmptext = "N" + std::to_string(i) + ":" + vtsocrs[i].first;
        cv::Point pt = cv::Point(tmprect.x,  tmprect.y);
        cv::rectangle(resultMat, tmprect, cv::Scalar(B, G, R));
        cv::putText(resultMat, tmptext, pt, 1, 1.2, cv::Scalar(B, G, R));


        std::cout << tmptext << std::endl;
      }




      CvUtils::SetShowWindow(resultMat, "cutMat", 600, 20);
      cv::imshow("cutMat", resultMat);

将调用成功后的列表,使用随机颜色显示出来,就实现了文章开头的效果了。

源码中关于动态库里的修改我会上传上来,完整的PaddleOCR的源码各位从PaddleOCR的源码地址中下载即可。

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第21张图片

源码地址

https://github.com/Vaccae/OpenCVDemoCpp.git

GitHub上不去的朋友,可以击下方的原文链接跳转到码云的地址,关注【微卡智享】公众号,回复【源码】可以下载我的所有开源项目。

724d84d22124ff481da1b81b0f06da92.png

扫描二维码

获取更多精彩

微卡智享

PaddleOCR C++(三)---动态库返回识别结果及矩形位置_第22张图片

「 往期文章 」

PaddleOCR C++学习笔记(二)

PaddleOCR C++动态库编译及调用识别(一)

飞桨PaddleOCR C++预测库布署

 

你可能感兴趣的:(字符串,opencv,cv,slam)