循环神经网络的实现

参考8.5. 循环神经网络的从零开始实现 — 动手学深度学习 2.0.0 documentation

参考循环神经网络(MLP——>RNN)_流萤数点的博客-CSDN博客

  • 我们可以训练一个基于循环神经网络的字符级语言模型,根据用户提供的文本的前缀生成后续文本。

  • 一个简单的循环神经网络语言模型包括输入编码、循环神经网络模型和输出生成

  • 循环神经网络模型在训练以前需要初始化状态,不过随机抽样和顺序划分使用初始化方法不同。

  • 当使用顺序划分时,我们需要分离梯度以减少计算量。

  • 在进行任何预测之前,模型通过预热期进行自我更新(例如,获得比初始值更好的隐状态)。

  • 梯度裁剪可以防止梯度爆炸,但不能应对梯度消失。

从头开始基于循环神经网络实现字符级语言模型。 这样的模型将在H.G.Wells的时光机器数据集上训练。 我们先读取数据集。 

pip install mxnet==1.7.0.post1
pip install d2l==0.15.0
%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

 1.独热编码

回想一下,在train_iter中,每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 我们通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding)。

 幸运的是,统计学家很早以前就发明了一种表示分类数据的简单方法:独热编码(one-hot encoding)。 独热编码是一个向量,它的分量和类别一样多。 类别对应的分量设置为1,其他所有分量设置为0。

例如,对六个状态进行编码:
自然顺序码为 000,001,010,011,100,101
独热编码则是 000001,000010,000100,001000,010000,100000

简言之,将每个索引映射为相互不同的单位向量: 假设词表中不同词元的数目为N(即len(vocab)), 词元索引的范围为0到N−1。 如果词元的索引是整数i, 那么我们将创建一个长度为N的全0向量, 并将第i处的元素设置为1。 此向量是原始词元的一个独热向量。 索引为0和2的独热向量如下所示:

npx.one_hot(np.array([0, 2]), len(vocab))
array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

我们每次采样的小批量数据形状是二维张量: (批量大小,时间步数)。 one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。 我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。

X = np.arange(10).reshape((2, 5))
npx.one_hot(X.T, 28).shape
(5, 2, 28)

2.初始化模型参数

接下来,我们初始化循环神经网络模型的模型参数。 隐藏单元数num_hiddens是一个可调的超参数。 当训练语言模型时,输入和输出来自相同的词表。 因此,它们具有相同的维度,即词表的大小。

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return np.random.normal(scale=0.01, size=shape, ctx=device)

    # 隐藏层参数
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = np.zeros(num_hiddens, ctx=device)
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = np.zeros(num_outputs, ctx=device)
    # 附加梯度
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.attach_grad()
    return params

3.循环神经网络模型

为了定义循环神经网络模型, 我们首先需要一个init_rnn_state函数在初始化时返回隐状态。 这个函数的返回是一个张量,张量全用0填充, 形状为(批量大小,隐藏单元数)。 在后面的章节中我们将会遇到隐状态包含多个变量的情况, 而使用元组可以更容易地处理些。

def init_rnn_state(batch_size, num_hiddens, device):
    return (np.zeros((batch_size, num_hiddens), ctx=device), )

下面的rnn函数定义了如何在一个时间步内计算隐状态和输出。 循环神经网络模型通过inputs最外层的维度实现循环, 以便逐时间步更新小批量数据的隐状态H。 此外,这里使用tanh函数作为激活函数。当元素在实数上满足均匀分布时,tanh函数的平均值为0

def rnn(inputs, state, params):
    # inputs的形状:(时间步数量,批量大小,词表大小)
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    # X的形状:(批量大小,词表大小)
    for X in inputs:
        H = np.tanh(np.dot(X, W_xh) + np.dot(H, W_hh) + b_h)
        Y = np.dot(H, W_hq) + b_q
        outputs.append(Y)
    return np.concatenate(outputs, axis=0), (H,)

定义了所有需要的函数之后,接下来我们创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数。

class RNNModelScratch:  #@save
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device, get_params,
                 init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = npx.one_hot(X.T, self.vocab_size)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, ctx):
        return self.init_state(batch_size, self.num_hiddens, ctx)

让我们检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.as_in_context(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape
((10, 28), 1, (2, 512))

我们可以看到输出形状是(时间步数×批量大小,词表大小), 而隐状态形状保持不变,即(批量大小,隐藏单元数)。

4.预测

让我们首先定义预测函数来生成prefix之后的新字符, 其中的prefix是一个用户提供的包含多个字符的字符串。 在循环遍历prefix中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """在prefix后面生成新字符"""
    state = net.begin_state(batch_size=1, ctx=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: np.array([outputs[-1]], ctx=device).reshape((1, 1))
    for y in prefix[1:]:  # 预热期
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  # 预测num_preds步
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(axis=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

现在我们可以测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符。 鉴于我们还没有训练网络,它会生成荒谬的预测结果。

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())
'time traveller psklwunvjd'

5.梯度裁剪

对于长度为T的序列,我们在迭代中计算这T个时间步上的梯度, 将会在反向传播过程中产生长度为O(T)的矩阵乘法链。 如 4.8节所述, 当T较大时,它可能导致数值不稳定, 例如可能导致梯度爆炸或梯度消失。 因此,循环神经网络模型往往需要额外的方式来支持稳定训练。

一般来说,当解决优化问题时,我们对模型参数采用更新步骤。 假定在向量形式的x中, 或者在小批量数据的负梯度g方向上。 例如,使用η>0作为学习率时,在一次迭代中, 我们将x更新为x−ηg。 如果我们进一步假设目标函数f表现良好, 即函数f在常数L下是利普希茨连续(Lipschitz continuous)。 也就是说,对于任意x和y我们有:

这意味着我们不会观察到超过Lη‖g‖的变化。 这既是坏事也是好事。 坏的方面,它限制了取得进展的速度; 好的方面,它限制了事情变糟的程度,尤其当我们朝着错误的方向前进时。

有时梯度可能很大,从而优化算法可能无法收敛。 我们可以通过降低η的学习率来解决这个问题。 但是如果我们很少得到大的梯度呢? 在这种情况下,这种做法似乎毫无道理。 一个流行的替代方案是通过将梯度g投影回给定半径 (例如θ)的球来裁剪梯度g。 如下式:

通过这样做,我们知道梯度范数永远不会超过θ, 并且更新后的梯度完全与g的原始方向对齐。 它还有一个值得拥有的副作用, 即限制任何给定的小批量数据(以及其中任何给定的样本)对参数向量的影响, 这赋予了模型一定程度的稳定性。 梯度裁剪提供了一个快速修复梯度爆炸的方法, 虽然它并不能完全解决问题,但它是众多有效的技术之一。

下面我们定义一个函数来裁剪模型的梯度, 模型是从零开始实现的模型或由高级API构建的模型。 我们在此计算了所有模型参数的梯度的范数。

def grad_clipping(net, theta):  #@save
    """裁剪梯度"""
    if isinstance(net, gluon.Block):
        params = [p.data() for p in net.collect_params().values()]
    else:
        params = net.params
    norm = math.sqrt(sum((p.grad ** 2).sum() for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

 6.训练

在训练模型之前,让我们定义一个函数在一个迭代周期内训练模型。 它与我们训练 3.6节模型的方式有三个不同之处。

  1. 序列数据的不同采样方法(随机采样和顺序分区)将导致隐状态初始化的差异。

  2. 我们在更新模型参数之前裁剪梯度。 这样的操作的目的是,即使训练过程中某个点上发生了梯度爆炸,也能保证模型不会发散。

  3. 我们用困惑度来评价模型。如 8.4.4节所述, 这样的度量确保了不同长度的序列具有可比性。

具体来说,当使用顺序分区时, 我们只在每个迭代周期的开始位置初始化隐状态。 由于下一个小批量数据中的第i个子序列样本 与当前第i个子序列样本相邻, 因此当前小批量数据最后一个样本的隐状态, 将用于初始化下一个小批量数据第一个样本的隐状态。 这样,存储在隐状态中的序列的历史信息 可以在一个迭代周期内流经相邻的子序列。 然而,在任何一点隐状态的计算, 都依赖于同一迭代周期中前面所有的小批量数据, 这使得梯度计算变得复杂。 为了降低计算量,在处理任何一个小批量数据之前, 我们先分离梯度,使得隐状态的梯度计算总是限制在一个小批量数据的时间步内。

当使用随机抽样时,因为每个样本都是在一个随机位置抽样的, 因此需要为每个迭代周期重新初始化隐状态。 与 3.6节中的 train_epoch_ch3函数相同, updater是更新模型参数的常用函数。 它既可以是从头开始实现的d2l.sgd函数, 也可以是深度学习框架中内置的优化函数。

#@save
def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """训练模型一个迭代周期(定义见第8章)"""
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            # 在第一次迭代或使用随机抽样时初始化state
            state = net.begin_state(batch_size=X.shape[0], ctx=device)
        else:
            for s in state:
                s.detach()
        y = Y.T.reshape(-1)
        X, y = X.as_in_ctx(device), y.as_in_ctx(device)
        with autograd.record():
            y_hat, state = net(X, state)
            l = loss(y_hat, y).mean()
        l.backward()
        grad_clipping(net, 1)
        updater(batch_size=1)  # 因为已经调用了mean函数
        metric.add(l * d2l.size(y), d2l.size(y))
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()

循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现。

def train_ch8(net, train_iter, vocab, lr, num_epochs, device,  #@save
              use_random_iter=False):
    """训练模型(定义见第8章)"""
    loss = gluon.loss.SoftmaxCrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    # 初始化
    if isinstance(net, gluon.Block):
        net.initialize(ctx=device, force_reinit=True,
                         init=init.Normal(0.01))
        trainer = gluon.Trainer(net.collect_params(),
                                'sgd', {'learning_rate': lr})
        updater = lambda batch_size: trainer.step(batch_size)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    # 训练和预测
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

现在,我们训练循环神经网络模型。 因为我们在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛。

num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

循环神经网络的实现_第1张图片

 

让我们检查一下使用随机抽样方法的结果。

net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),
          use_random_iter=True)

循环神经网络的实现_第2张图片

 

你可能感兴趣的:(自然语言处理,rnn,人工智能,深度学习)