import torch
from torch import nn
from d2l import torch as d2l
def dropout_layer(X,dropout):
'''
训练过程中,依概率dropout变化隐藏层的全连接层的输出
'''
assert 0 <= dropout <=1
if dropout==1:
return torch.zeros_like(X)
if dropout==0:
return X
mask=(torch.randn(X.shape)>dropout).float()
return mask*X/(1.0-dropout)
X=torch.arange(16,dtype=torch.float32).reshape((2,8))
print(X)
print(dropout_layer(X,0.))
print(dropout_layer(X,0.5))
print(dropout_layer(X,1.))
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0., 0., 0., 0., 0., 10., 0., 14.],
[ 0., 0., 0., 0., 0., 0., 0., 30.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
num_inputs,num_outputs,num_hiddens1,num_hiddens2=784,10,256,256
dropout1,dropout2=0.2,0.5
class Net(nn.Module):
'''
继承nn.Module
'''
def __init__(self,num_inputs,num_outputs,num_hiddens1,num_hiddens2,is_training=True):
'''
初始化方法
:param is_training 是否在训练中
'''
super(Net,self).__init__()
self.num_inputs=num_inputs
self.training=is_training
self.lin1=nn.Linear(num_inputs,num_hiddens1)
self.lin2=nn.Linear(num_hiddens1,num_hiddens2)
self.lin3=nn.Linear(num_hiddens2,num_outputs)
self.relu=nn.ReLU()
def forward(self,X):
'''
前向传播
'''
H1=self.relu(self.lin1(X.reshape((-1,self.num_inputs))))
if self.training==True:
H1=dropout_layer(H1,dropout1)
H2=self.relu(self.lin2(H1))
if self.training==True:
H2=dropout_layer(H2,dropout2)
out=self.lin3(H2)
return out
net=Net(num_inputs,num_outputs,num_hiddens1,num_hiddens2)
num_epochs,lr,batch_size=10,0.5,256
loss=nn.CrossEntropyLoss(reduction='none')
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)
trainer=torch.optim.SGD(net.parameters(),lr=lr)
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)