动手学深度学习之经典的卷积神经网络之VGG

VGG

动手学深度学习之经典的卷积神经网络之VGG_第1张图片

VGG块

  • 深 vs 宽

    • 5 * 5卷积
    • 3 * 3卷积
    • 深但窄效果更好
  • VGG块

    • 3 * 3卷积(填充1)(n层,m通道)。也就是说一个VGG块中可以有n个卷积层,每个卷积层的通道数都是一样的
    • 2 * 2最大池化层(步幅2)。每个VGG块的最后一层
      动手学深度学习之经典的卷积神经网络之VGG_第2张图片

VGG架构

  • 其实就是替换掉AlexNet的整个卷积的部分
  • 在多个VGG块之后连接全连接层
  • 不同次数的重复块得到不同的架构VGG-16,VGG-19…
    动手学深度学习之经典的卷积神经网络之VGG_第3张图片

进度

动手学深度学习之经典的卷积神经网络之VGG_第4张图片

总结

  • VGG有两个思想影响了后来的研究:1、使用可重复的块来构建深度神经网络。2、不同的配置
    动手学深度学习之经典的卷积神经网络之VGG_第5张图片

VGG代码实现

import torch
from torch import nn
from d2l import torch as d2l

# VGG块
def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*layers)

# VGG架构
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

def vgg(conv_arch):
    conv_blks = []
    in_channel = 1
    for (num_conv, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_conv, in_channel, out_channels))
        in_channel = out_channels
    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),
        nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),
        nn.Dropout(0.5), nn.Linear(4096, 10)
    )

net = vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
# 从下面我们可以看到每一个VGG块的思想就是将高宽减半,通道数翻倍
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__, 'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 64, 112, 112])
Sequential output shape:	 torch.Size([1, 128, 56, 56])
Sequential output shape:	 torch.Size([1, 256, 28, 28])
Sequential output shape:	 torch.Size([1, 512, 14, 14])
Sequential output shape:	 torch.Size([1, 512, 7, 7])
Flatten output shape:	 torch.Size([1, 25088])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 4096])
ReLU output shape:	 torch.Size([1, 4096])
Dropout output shape:	 torch.Size([1, 4096])
Linear output shape:	 torch.Size([1, 10])
# 因为VGG-11比AlexNet计算量更大,因此我们构建一个通道数较小的网络来训练
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

使用Colab训练

import torch
import time
from torch import nn
from d2l import torch as d2l

# VGG块
def vgg_block(num_convs, in_channels, out_channels):
    layers = []
    for _ in range(num_convs):
        layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        layers.append(nn.ReLU())
        in_channels = out_channels
    layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
    return nn.Sequential(*layers)
# VGG架构
conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

def vgg(conv_arch):
    conv_blks = []
    in_channel = 1
    for (num_conv, out_channels) in conv_arch:
        conv_blks.append(vgg_block(num_conv, in_channel, out_channels))
        in_channel = out_channels
    return nn.Sequential(
        *conv_blks, nn.Flatten(),
        nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(),
        nn.Dropout(0.5), nn.Linear(4096, 4096), nn.ReLU(),
        nn.Dropout(0.5), nn.Linear(4096, 10)
    )
  
# 因为VGG-11比AlexNet计算量更大,因此我们构建一个通道数较小的网络来训练
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
start = time.time()
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
end = time.time()
print(f"time: {end - start}")
loss 0.180, train acc 0.933, test acc 0.920
388.2 examples/sec on cuda:0
time: 1701.2966752052307

动手学深度学习之经典的卷积神经网络之VGG_第6张图片

你可能感兴趣的:(机器学习&深度学习)