- Redis 集群模式的工作原理能说一下么?
小新杂谈社
缓存后端面试redis数据库缓存分布式
面试题Redis集群模式的工作原理能说一下么?在集群模式下,Redis的key是如何寻址的?分布式寻址都有哪些算法?了解一致性hash算法吗?面试官心理分析在前几年,Redis如果要搞几个节点,每个节点存储一部分的数据,得借助一些中间件来实现,比如说有codis,或者twemproxy,都有。有一些Redis中间件,你读写Redis中间件,Redis中间件负责将你的数据分布式存储在多台机器上的Re
- 2024年AI虚拟伴侣应用趋势深度剖析:技术前沿与社会影响
花生糖@
技术科普AIGC学习资料库人工智能AI数字人aigc产品经理
随着人工智能技术的飞速发展,AI虚拟伴侣市场在2024年迎来了前所未有的繁荣期。这一新兴领域不仅验证了产品与市场的高度契合(Product-MarketFit,PMF),而且正逐步成为连接用户、流量与商业价值的桥梁。本文旨在深入探讨驱动AI伴侣行业爆炸性增长的关键趋势,并分析背后的技术动向及社会心理因素,为创业者和开发者提供一份全面的参考指南。一、市场概览:AI伴侣的崛起近年来,以Characte
- AI与育儿领域的融合——探索未来的可能性
花生糖@
AIGC学习资料库人工智能AI创业点创意点
在当今快速发展的社会中,育儿成为了众多家庭面临的重大挑战。随着人工智能(AI)技术的不断进步,AI在育儿领域的应用逐渐展现出巨大的潜力,不仅能够为父母提供及时有效的支持,还能在很大程度上改善育儿体验。本文旨在探讨AI技术如何与育儿领域相结合,创造新的商业机会,以及未来的发展趋势。一、AI解决育儿的核心痛点育儿是一项复杂的工作,涉及广泛的知识和技能。然而,专业的育儿服务通常价格昂贵,许多家庭无法承担
- 【人工智能】AI现状分析 || 神经网络的数学基础 || 人工智能交叉领域的发展和技术应用 || 附:小白入门人工智能 学习步骤
追光者♂
Python从入门到人工智能百题千解计划(项目实战案例)人工智能交叉领域神经网络的数学基础AI现状分析
声明:仅学习使用~资料整理分析不易,点个赞吧!目录1.AI现状分析(人工智能基础入门概念)1.1人工智能基础概念1.2人工智能的技术发展路线1.3产业发展的驱动因素1.4人工智能薪资岗位介绍2.神经网络的数学基础2.1神经网络的生物表示2.2神经网络的数学表示2.3神经网络必备的一些数学基础2.3.1Sigmoid函数2.3.2偏置2.4总结3.人工智能交叉领域的发展和技术应用3.1人工智能应用交
- MATLAB算法实战应用案例精讲-【目标检测】机器视觉-工业相机(补充篇)
林聪木
数码相机matlab算法
目录知识储备光学系统设计全过程算法原理工业相机基本参数以及选型工业相机基本参数:如何选择合适的工业相机:分辨率分辨率的定义与“检测/测量精度”的区别分辨率与相机的匹配相机关键参数设置工业相机的曝光、曝光时间、快门、增益什么是曝光?什么是快门影响曝光的因素工业相机-坐标系和机械手坐标系的标定工业相机-缺陷检测一、相机的选择(1)工业数字相机的分类:(2)相机的主要参数(3)工业数字摄像机主要接口类型
- C/C++程序在不同环境中迁移时的注意事项
coolhuhu~
cpp工程问题linuxc++linux工程实践
问题在你的开发环境中,编译、链接、运行测试都没问题,迁移到其他机器上运行程序时,程序运行不起来或运行异常。场景一开发环境的机器CPU为ARM架构,而测试环境的机器CPU为x86架构。场景二测试环境中缺乏程序依赖的库。体现在没有把开发环境中编译时所依赖的相关库迁移到测试环境中。场景三测试环境中程序运行时,所依赖库的版本不一致。一种场景是,程序在开发环境中编译、链接依赖libstdc++.so.6.0
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- 流行编程语言全解析:优势、应用与短板
a小胡哦
pythonjavac++c语言javascriptswiftr语言
Python:优势Python以其简洁、易读的语法闻名,新手能快速上手。丰富的库和框架,能极大地提高开发效率。适用领域数据科学与分析:处理和分析大规模数据集,进行数据可视化。典型示例:Google用Python进行数据分析,处理海量数据以支持各种业务决策。机器学习与人工智能:构建和训练模型。典型示例:OpenAI在很多人工智能项目中广泛使用Python,如GPT系列模型的研发。网络爬虫:轻松从网页
- Python 用pytorch从头写Transformer源码,一行一解释;机器翻译实例代码;Transformer源码解读与实战
医学小达人
NLPLLMsGPT深度学习人工智能transformerpython机器学习
1.Transformer简介Transformer模型被提出的主要动机是解决序列处理任务的长距离依赖问题。传统的RNN和LSTM虽然能够处理序列任务,但因为它们在处理序列时需要一步步前进,因此其他信息无法立即对其产生影响,当序列变长时,长距离依赖的信息很可能会被丢失。为了解决这个问题,Transformer模型被设计出来,内核思想是利用自注意力机制,这样模型可以直接对输入序列的任意两个位置建立直
- 【自学笔记】机器学习基础知识点总览-持续更新
Long_poem
笔记机器学习人工智能
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录机器学习重点知识点总览一、机器学习基础概念二、机器学习理论基础三、机器学习算法1.监督学习2.无监督学习3.强化学习四、机器学习处理流程五、机器学习常见问题与解决方法六、机器学习应用领域总结机器学习重点知识点总览一、机器学习基础概念定义:机器学习是一种人工智能技术,通过对数据的学习和分析,让计算机系统自动提高其性能。本质:找到
- 解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
紫雾凌寒
AI炼金厂机器学习算法逻辑回归深度学习pythonscikit-learnmatplotlib
引言前面一篇文章我们介绍了机器学习算法中我们最先会接触到的算法——线性回归:机器学习的基石。今天我们继续学习机器学习中的另一个算法模型——逻辑回归(LogisticRegression)。一、逻辑回归:不是回归的“回归”在机器学习的庞大算法体系中,逻辑回归(LogisticRegression)虽然名字中带有“回归”,但却是一位不折不扣的“分类高手”,主要用于解决二分类问题,在众多领域发挥着关键作
- 【第11章:生成式AI与创意应用—11.2 音频与音乐生成的探索与实践】
再见孙悟空_
#【深度学习・探索智能核心奥秘】人工智能音视频自然语言处理NLP深度学习生成式AIDeepSeek
凌晨三点的录音棚里,制作人小林对着空荡荡的混音台抓狂——广告方临时要求将电子舞曲改编成巴洛克风格,还要保留"赛博朋克"元素。当他在AI音乐平台输入"维瓦尔弟遇见霓虹灯"的瞬间,一段融合羽管键琴与合成器的奇妙旋律喷涌而出,这场人与机器的音乐狂想曲正式拉开帷幕。一、声波炼金术:从物理建模到神经作曲1.1传统音频生成的三大门派在AI登场之前,音乐科技已经历三次革命:物理建模派(1980s):用微分方程模
- 单片机、嵌入式Linux开发大学自学路径
Oriental Son
嵌入式MCU单片机单片机学习stm32mculinux
笔者所修读的专业为物联网工程,物联网工程是一门新兴的、热门的专业,其所涉及的学科更是又多又杂,既有计算机方向的编程语言(如C、C++、Java、Python等)、数据结构与算法、操作系统、移动端应用开发、机器学习等;软硬结合的方向有数字电路单片机开发、嵌入式Linux开发等;硬件、电路方向有电路分析、数字电路、模拟电路、传感器原理、RFID、FPGA开发等;涉及信号处理的有信号与系统、通信原理等。
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- 从宇树科技机器人 G1 爆火,看机器人发展现状与未来
zhz5214
AI算法机器人人工智能AI写作
近日,科技圈被一则重磅消息点燃:宇树科技的机器人G1迅速走红,不仅现身美国街头自由“漫步”,与外国友人亲切互动握手,更是以7万美刀(折合人民币约49万元)的价格出口美国,引发全球科技爱好者和行业专家的高度关注。这一现象不仅成为科技领域的热门话题,更如同一束强光,照亮了机器人产业正在经历的深刻变革之路。今天,就让我们一同深入剖析机器人的当下发展态势与未来走向。宇树科技机器人G1,缘何能在市场中脱颖而
- 亚远景-ISO/PAS 8800:2024《道路车辆—安全和人工智能》简介
亚远景aspice
汽车人工智能大数据
ISO/PAS8800:2024《道路车辆—安全和人工智能》简介:ISO/PAS8800:2024《道路车辆—安全和人工智能》背景与意义随着汽车智能化发展,自动驾驶和智能座舱等技术快速进步,但人工智能在汽车领域应用面临安全性、数据质量与管理、技术标准规范缺失、公众认知和接受度等挑战。该标准旨在规范汽车领域人工智能技术应用,提高系统安全性、可靠性和兼容性,推动汽车智能化健康发展。ISO/PAS880
- 《2025-2030年全球及中国人工智能芯片(AI芯片)行业发展前景展望与投资战略规划分析报告》1
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型计算价值投资人工智能
下面呈现《2025-2030年全球及中国人工智能芯片(AI芯片)行业发展前景展望与投资战略规划分析报告》全文,全文内容超过20000字,报告内容全面、结构严谨,涵盖了全球及中国市场现状、技术趋势、竞争态势、政策环境、风险分析以及未来投资战略规划等多个方面,供相关决策部门和投资机构参考。《2025-2030年全球及中国人工智能芯片(AI芯片)行业发展前景展望与投资战略规划分析报告》目录摘要前言全球人
- AI芯片:科技变革的核心驱动力
乐得瑞_郑钊展13172458616
人工智能科技
近年来,人工智能(AI)的飞速发展对众多行业产生了深远影响,芯片领域也不例外。AI在芯片设计、制造及应用等方面带来了革新性的改变,成为推动芯片行业发展的关键力量。AI助力芯片设计效率飞升传统芯片设计极为复杂,涉及数十亿晶体管的布局与连接,需庞大工程师团队耗费数月至数年才能完成从架构到制造的全流程。不过,AI技术的出现正在扭转这一局面。AI能处理繁重重复任务,优化复杂芯片布局并设计专用芯片,大大提高
- Elasticsearch 技术分享
chao_dev
大数据elasticsearch
Elasticsearch技术分享文章目录Elasticsearch技术分享一,Elasticsearch基础介绍1.简介2.kibana3.基本概念4.索引的应用二,Elasticsearch聚合查询1.聚合的概念2.Metric(指标)聚合3.Bucket(桶)聚合4.Pipeline(管道)聚合5.Matrix(矩阵)聚合6.总结三,Elasticsearch索引别名Aliases1.业务问
- 为一位经验丰富的程序员量身定制Python学习路线 人工智能首选语言:python Python新技术
小黄人软件
chatGPTpython学习人工智能
人工智能首选语言:python必学。解释型语言(无编译这个环节),直接执行代码,面向对象,脚本语言没基础在这里学为一位经验丰富的程序员量身定制Python学习路线,主要应关注于深化已有的编程知识和技能,并探索Python特有的高级特性。以下是推荐的学习路线:基础复习:如果对Python基础不熟悉,先从Python的基础语法、数据类型、控制流程等开始复习。高级语言特性:深入理解装饰器、上下文管理器、
- 强化学习:原理、概念与代码实践
AndrewHZ
深度学习新浪潮人工智能深度学习强化学习机器学习算法deepseek
一、引言强化学习(ReinforcementLearning)作为机器学习的一个重要分支,旨在通过智能体(agent)与环境的交互,学习到最优的行为策略,以最大化长期累积奖励。它在机器人控制、游戏、自动驾驶、资源管理等众多领域都取得了显著的成功。本文将深入介绍强化学习的数学原理、核心概念,并通过公式推导来加深理解,同时结合一个具体的实例,使用Python语言进行代码实现,帮助读者全面掌握强化学习的
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
架构默片
JAVA工程师从0开始学AI人工智能javapython
副标题:当严谨的Java遇上"七十二变"的Python函数式编程历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人",带着"记忆传承"的能力自由穿梭于代码之间。这里没有类的枷锁,函数既是武器又是盾牌,高阶函数组合出的"代码万花筒",正是AI数据处理、模型训练的核心密码。本文将用J
- 知识管理成功:关键指标和策略,研究信息的投资回报率
清风徐徐de来
其他
信息过载会影响生产力。没有人工智能的帮助,信息过载会影响生产力。大量的可用信息,知识工作者不仅仅是超负荷工作;他们感到不知所措,他们倾向于浪费时间(和脑细胞)来应付他们被大量的数据抛向他们,挣扎着试图筛选出重要的信息数据来自一堆不重要和重复的数据。这是一场失败的战斗。计算投资回报率(ROI)是一个公认的商业方法ROI是一种用于确定可行性的方法一项新事业或对既定流程的重大改变。从本质上讲,投资回报率
- 《Grok3:AI新纪元的璀璨之星》
空云风语
人工智能深度学习神经网络人工智能百度
《Grok3:AI新纪元的璀璨之星》Grok3:横空出世,震撼AI界在科技飞速发展的今天,人工智能领域的每一次重大突破都如同巨石投入平静湖面,激起千层浪。而Grok3的发布,无疑是一颗重磅炸弹,在AI界掀起了惊涛骇浪,引发了全球范围内的广泛关注和激烈讨论。北京时间2月18日午间,马斯克旗下人工智能初创公司xAI正式发布新一代聊天机器人Grok3,这场发布会吸引了超过200万人观看,其受关注度可见一
- DeepSeek大模型的发展的十问十答
科技互联人生
人工智能AIGCDeepseek
DeepSeek大模型是由杭州深度求索人工智能基础技术研究有限公司开发的一款基于Transformer架构的大型语言模型,具体介绍如下:1.架构基础Transformer架构:DeepSeek大模型基于Transformer架构,该架构由Google在2017年提出,以自注意力机制为核心,能够并行处理输入序列中的每个元素,从而大大提高模型的计算效率。DeepSeek在Transformer架构的基
- 360智算中心:万卡GPU集群落地实践
ZVAyIVqt0UFji
360智算中心是一个融合了人工智能、异构计算、大数据、高性能网络、AI平台等多种技术的综合计算设施,旨在为各类复杂的AI计算任务提供高效、智能化的算力支持。360智算中心不仅具备强大的计算和数据处理能力,还结合了AI开发平台,使得计算资源的使用更加高效和智能化。360内部对于智算中心的核心诉求是性能和稳定性,本文将深入探讨360智算中心在万卡GPU集群中的落地实践过程,包括算力基础设施搭建、集群优
- 【Python】成功解决NameError: name ‘XXX’ is not defined
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决NameError:name‘XXX’isnotdefined欢迎莅临我的个人主页这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!博主简介:我是云天徽上,一名对技术充满热情的探索者。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。尤其是在NLP领域,我积累了丰富的经验,能够
- 什么是Scaling Laws(缩放定律);DeepSeek的Scaling Laws
ZhangJiQun&MXP
教学2024大模型以及算力2021论文人工智能自然语言处理神经网络语言模型深度学习
什么是ScalingLaws(缩放定律)ScalingLaws(缩放定律)在人工智能尤其是深度学习领域具有重要意义,以下是相关介绍及示例:定义与内涵ScalingLaws主要描述了深度学习模型在规模(如模型参数数量、训练数据量、计算资源等)不断扩大时,模型性能与这些规模因素之间的定量关系。它表明,在一定条件下,模型的性能会随着模型规模的增加而以某种可预测的方式提升,通常表现为模型的损失函数值随模型
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin