- 边缘人工智能与医疗AI融合发展路径:技术融合与应用前景(下)
Allen_Lyb
数智化医院2025人工智能健康医疗数据库矩阵
医疗边缘AI的市场趋势医疗边缘AI市场正经历着显著的增长,根据市场研究公司的数据,2024年的边缘AI市场价值为125亿美元,估计在2025至2034年之间,由于各部门越来越多地采用边缘装置,CAGR为24.8%。保健、制造业、零售业和汽车业的企业拥有综合边缘计算解决方案[36]。这一增长趋势表明,边缘AI技术正在各行各业得到广泛应用,其中医疗保健是一个重要的应用领域。2023年全球边缘人工智能市
- AI 编程对决:Gemini CLI vs Claude Code,谁是最佳 AI 编码工具?
charieli-fh
人工智能大模型
1.引言:AI编码工具的崛起在软件开发的快节奏世界中,人工智能(AI)工具正迅速从辅助角色转变为不可或缺的伙伴。它们不再仅仅是提供代码补全,而是能够理解复杂上下文、执行多步骤任务,甚至自动化整个工作流的智能代理。这种转变正在重塑开发者的日常工作,提高生产力,并加速创新。在众多涌现的AI编码工具中,Google的GeminiCLI和Anthropic的ClaudeCode脱颖而出,各自代表了AI辅助
- 百度颠覆了自己,飞算JavaAI造福了中国程序员!
飞算JavaAI开发助手
百度
在当今这个科技日新月异的时代,企业纷纷寻求技术突破,以期在激烈的市场竞争中脱颖而出。百度,作为中国互联网行业的领军企业之一,凭借其强大的科技实力和创新能力,在人工智能等多个领域取得了显著成就,并正在逐步颠覆自身的传统形象。百度自成立之初,就将技术创新视为企业的生命线。从最初的搜索引擎技术,到如今的深度学习、自然语言处理、计算机视觉等前沿领域,百度始终走在技术革新的前沿。其自主研发的飞桨深度学习平台
- Java AI 开发智能体:从入门到实践
培风图南以星河揽胜
javajava人工智能开发语言
在人工智能(AI)技术蓬勃发展的今天,智能体作为AI领域的核心概念之一,正逐渐渗透到各个行业与应用场景。而Java凭借其跨平台性、丰富的类库和强大的生态系统,成为开发智能体的热门选择。本文将深入探讨如何使用Java进行AI开发智能体,从基础概念到实践应用,解答常见问题,为你揭开JavaAI开发智能体的神秘面纱。一、Java在AI开发中的优势1.跨平台性Java的“一次编写,到处运行”特性,使得基于
- ollama v0.9.4 详解:联网功能、模型目录自定义及macOS性能优化全面升级
近年来,随着人工智能技术的快速发展,模型管理与调用变得尤为重要。作为一款备受关注的本地AI模型管理工具,Ollama在最新发布的v0.9.4版本中带来了多项重磅改进和全新功能,提升了用户体验和应用场景的灵活性。本文将深入解析Ollamav0.9.4版本的功能亮点、技术改进以及实用操作指南,帮助广大开发者和AI爱好者全面掌握这款工具的最新动态。一、版本概述Ollamav0.9.4版本于2025年7月
- 【深度学习:进阶篇】--4.2.词嵌入和NLP
西柚小萌新吖(●ˇ∀ˇ●)
#深度学习深度学习自然语言处理人工智能
在RNN中词使用one_hot表示的问题假设有10000个词每个词的向量长度都为10000,整体大小太大没能表示出词与词之间的关系例如Apple与Orange会更近一些,Man与Woman会近一些,取任意两个向量计算内积都为0目录1.词嵌入1.1.特点1.3.word2vec介绍1.3.Word2Vec案例1.3.1.训练语料1.3.2.步骤1.3.3.代码2.测试代码1.词嵌入定义:指把一个维数
- 【深度学习】卷积神经网络(CNN)原理
chaser&upper
深度学习神经网络卷积计算机视觉
【深度学习】卷积神经网络原理1.卷积神经网络的组成2.卷积层2.1卷积运算过程3.padding-零填充3.1ValidandSame卷积3.2奇数维度的过滤器4.stride-步长5.多通道卷积5.1多卷积核(多个Filter)6.卷积总结7.池化层(Pooling)8.全连接层9.总结1.卷积神经网络的组成定义卷积神经网络由一个或多个卷积层、池化层以及全连接层等组成。与其他深度学习结构相比,卷
- 深度学习学习经验——卷积神经网络(CNN)
Linductor
深度学习学习经验深度学习学习cnn
卷积神经网络卷积神经网络(CNN)1.卷积神经网络的基本组成2.卷积操作3.激活函数(ReLU)4.池化操作5.全连接层6.卷积神经网络的完整实现项目示例项目目标1.加载数据2.卷积层:图像的特征探测器2.1第一个卷积层3.激活函数:增加非线性4.池化层:信息压缩器5.多层卷积和池化:逐层提取更高层次的特征6.全连接层:分类器7.模型训练和测试完整的项目示例代码总结卷积神经网络(CNN)卷积神经网
- 用鸿蒙打造真正的跨设备数据库:从零实现分布式存储
网罗开发
HarmonyOS实战源码实战harmonyos数据库分布式
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 成为高级Python开发人员的完整学习路线与核心知识体系
引言Python已成为全球最受欢迎的编程语言之一,其简洁的语法和强大的生态系统使其在数据科学、Web开发、自动化、人工智能等领域占据重要地位。然而,从初级Python程序员到真正的高级开发人员,需要掌握一系列深入的知识点和实践经验。本文将详细介绍成为高级Python开发人员必备的核心知识体系,并提供系统化的学习资源,帮助你规划专业发展路径。第一部分:Python语言基础进阶1.Python语言特性
- 【AI】闭环反馈:构建从用户处学习的人工智能
秋说
AI广延人工智能AI
文章目录前言AI产品性能的双重视角:模型指标vs用户信号模型指标:AI系统的“内部视角”用户信号:AI产品的“外部视角”用户信号类型用户信号的价值模型指标为何难以独立支撑产品成功如何设计AI产品的全面反馈闭环一、统一成功标准:模型指标+用户价值二、用户信号的数据采集策略三、整合多源数据流四、分析与洞察从反馈到改进:迭代驱动的闭环循环一、识别并优先解决核心问题二、将用户信号转化为模型改进方向三、产品
- AppML 案例简介
沐知全栈开发
开发语言
AppML案例简介引言AppML,全称为“应用程序机器学习”,是一种将机器学习技术与移动应用开发相结合的技术框架。它旨在简化移动应用的机器学习功能集成,使得开发者无需深入了解复杂的机器学习算法,即可将强大的AI功能引入他们的应用中。本文将简要介绍AppML的一些成功案例,展示其在不同领域的应用和价值。AppML案例一:健康监测应用案例概述:一款名为“HealthMate”的健康监测应用利用AppM
- 深度学习之分类手写数字的网络
newyork major
卷积神经网络CNN深度学习人工智能
面临的问题定义神经⽹络后,我们回到⼿写识别上来。我们可以把识别⼿写数字问题分成两个⼦问题:把包含许多数字的图像分成⼀系列单独的图像,每个包含单个数字;也就是把图像,分成6个单独的图像分类单独的数字我们将专注于编程解决第⼆个问题,分类单独的数字。这样是因为,⼀旦你有分类单独数字的有效⽅法,分割问题是不难解决的。⼀种⽅法是尝试不同的分割⽅式,⽤数字分类器对每⼀个切分⽚段打分;如果数字分类器对每⼀个⽚段
- 推荐文章:探索深度学习的不确定性边界 —— SDE-Net 开源项目解析
史多苹Thomas
推荐文章:探索深度学习的不确定性边界——SDE-Net开源项目解析SDE-NetCodeforpaper:SDE-Net:EquippingDeepNeuralnetworkwithUncertaintyEstimates项目地址:https://gitcode.com/gh_mirrors/sd/SDE-Net在当今的人工智能领域,深度神经网络(DNN)已经成为推动技术创新的基石。然而,其预测的
- 【Java】已解决java.sql.SQLRecoverableException异常
屿小夏
java开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- IT 行业深度洞察:从技术革命到产业重构的全景图谱
XQR.小白
重构
摘要本文系统梳理IT行业的发展脉络,深入剖析云计算、人工智能、大数据、物联网等核心技术的演进逻辑与协同效应,揭示IT产业在数字化转型浪潮中的生态重构与价值创造。通过典型案例分析与数据支撑,探讨行业面临的技术挑战、伦理困境与全球化竞争格局,展望IT技术如何持续驱动社会变革与产业升级。全文结合2025年最新技术动态与市场趋势,为从业者、投资者与研究者提供兼具理论深度与实践指导的行业参考。目录摘要一、I
- 深度学习流体力学【干货】
人工智能交叉前沿技术,
人工智能深度学习python机器学习
深度学习作为一种新兴的机器学习技术,为流体科学的研究提供了新的思路和方法。通过对大量数据的学习和分析,深度学习模型可以自动提取特征和模式,为流体科学中的复杂问题提供解决方案。然而,深度学习在流体科学中的应用还面临一些挑战,需要进一步研究和探索。未来,深度学习与传统流体力学方法的结合将成为流体科学研究的重要方向,多模态数据的融合、模型的可解释性、实时预测和控制等将是深度学习在流体科学中发展的重点。相
- 使用GPU进行机器学习训练时,如果GPU-Util计算核心满载工作但是显存占用较少,应该如何优化?
十子木
机器学习深度学习人工智能
是否需要优化?如果任务运行正常:无需干预(GPU设计本就是优先榨干计算性能)。如果出现卡顿或效率低下:增大batch_size:提升显存占用,减少数据搬运次数(但需避免OOM)。启用混合精度:torch.cuda.amp可减少显存占用并加速计算。检查CPU到GPU的数据流:避免频繁的小数据拷贝(如DataLoader的num_workers设置)。
- 机器学习中为什么要用混合精度训练
十子木
机器学习机器学习人工智能
目录FP16与显存占用关系机器学习中一般使用混合精度训练:FP16计算+FP32存储关键变量。FP16与显存占用关系显存(VideoRAM,简称VRAM)是显卡(GPU)专用的内存。FP32(单精度浮点):传统深度学习默认使用32位浮点数每个参数占用`4字节`例如:1亿参数的模型→约400MB显存FP16(半精度浮点):每个参数占用`2字节`(直接减半)相同模型→约200MB显存双精度浮点(FP6
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 探索Gemini Balance:Google Gemini API的代理与负载均衡解决方案
几道之旅
人工智能智能体及数字员工负载均衡运维人工智能
引言在人工智能领域,API的高效使用和管理至关重要。尤其是当涉及到Google的GeminiAPI时,为了实现更稳定、更高效的服务,我们需要一个强大的代理和负载均衡工具。今天,我们就来深入了解一下GeminiBalance这个开源项目,它为GeminiAPI的使用提供了全面而灵活的解决方案。项目概述GeminiBalance是一个基于PythonFastAPI构建的应用程序,主要用于提供Googl
- 意识边疆保卫战:22:47深圳AI-BioFab人机融合危机全息实录
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《意识边疆保卫战:22:47深圳AI-BioFab人机融合危机全息实录》副标题:机械义肢产线惊现神经突触叛乱,中国科学家激活甲骨文量子纹重写人类认知主权2025年7月2日22:47光明科学城脑机接口中心急电负五层神经植入舱突爆血雾!为边防军人陈默安装的AI机械臂在神经接驳瞬间剧烈震颤,量子脑电图
- 时空屏障崩塌:14:28深圳AI-BioFab平行宇宙保卫战全纪实
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《时空屏障崩塌:14:28深圳AI-BioFab平行宇宙保卫战全纪实》副标题:抗癌疫苗冷链门关闭前3秒遭量子生物武器袭击,中国科学家启动长城时空盾改写人类文明存续方程2025年7月2日14:28:57光明科学城虫洞警报第184支疫苗即将注入液氮罐的刹那,B3层量子钟突现重影!14:28/15:4
- 实时直击:全球首座AI-BioFab工厂72小时全息记录
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《实时直击:全球首座AI-BioFab工厂72小时全息记录》副标题:2025年7月2日深圳现场——癌症疫苗11天定制神话如何改写万亿生物经济规则本报深圳2025年7月2日电(记者徐远舟)此刻,位于光明科学城负三层的无菌车间内,液态机器人正将第4,817管CRISPR编辑液注入微流控芯片。墙上的量
- 生命制造的读秒革命:全球首个AI-BioFab工厂72小时全息记录
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《生命制造的读秒革命:全球首个AI-BioFab工厂72小时全息记录》副标题:2025年7月2日14:04深圳现场——癌症疫苗定制最后3分钟如何改写万亿生物经济规则光明科学城2025年7月2日电(记者直击)负三层B区微流控平台红光闪烁,液态机械臂正将第9,217管CRISPR编辑液注入芯片。量子
- 合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《合成生物学奇点:AI驱动CRISPR超进化工厂2025投产纪实》副标题:全球首座AI-BioFab落地深圳,蛋白质设计周期从3年压缩至11天,生物制造成本暴跌90%一、生物制造范式的历史性颠覆▶︎传统生物工程的三大世纪困局graphTDA[缓慢的试错循环]-->B[单基因改造耗时≥6个月]C[
- 千亿参数大模型轻量化实战:手机端LLM推理加速300%方案
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《千亿参数大模型轻量化实战:手机端LLM推理加速300%方案》副标题:2025实测骁龙8Gen4+FP4稀疏量化技术,70B模型推理延迟低至127ms,重构移动端AI天花板封面图:[高通骁龙8Gen4芯片显微照片与Llama3-70B手机端运行界面对比图,右上角标注「实测延迟:127ms/tok
- 多模态进化论:GPT-5V图文推理能力在工业质检中的颠覆性应用
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《多模态进化论:GPT-5V图文推理能力在工业质检中的颠覆性应用》副标题:2025年实测报告显示误检率降至0.0038%,重构制造业质量标准体系封面建议:GPT-5V识别微米级电路板缺陷的对比图,背景显示传统AOI与GPT-5V的误检率曲线一、工业质检的范式革命▶︎传统视觉检测的三大死穴传统AO
- 《脑机接口:意识数字化的奇点何时到来?》
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站《脑机接口:意识数字化的奇点何时到来?》展开全景式论述。文章结合2025年最新科研突破与伦理实践,以“技术裂变-意识革命-文明跃迁”为逻辑主线,揭示神经科学与人工智能融合如何重绘人类存在的边界:脑机接口:意识数字化的奇点何时到来?副标题:从神经解码到意识上传,一场重塑人类本质的技术奇袭作者:意识
- 【硬核拆解】英伟达Blackwell芯片架构如何重构AI算力边界?
HeartException
人工智能
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站一、Blackwell诞生的算力危机(2025现状)graphTDA[2025年AI算力需求]-->B[千亿参数模型训练能耗>20GWh]A-->C[10万亿参数模型涌现]A-->D[传统架构内存墙:数据搬运耗能占68%]行业拐点事件:2025年3月:OpenAI宣布训练125万亿参数MoE模型
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓