Python+Qt人脸识别统计人数窗体

 程序示例精选

Python+Qt人脸识别统计人数窗体

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!

前言

这篇博客针对《Python+Qt人脸识别统计人数窗体》编写代码,功能包括人脸识别,数量统计。代码整洁,规则,易读。应用推荐首选。


 运行结果: 


文章目录

        一、所需工具软件

        二、使用步骤

                1. 引入库

                2. 打开图像

                3. 识别图像特征

                4. 运行结果

         三在线协助


一、所需工具软件

          1. Python3.6以上

          2. Pycharm代码编辑器

          3. PyQt, OpenCV库

二、使用步骤

1.引入库

代码如下(示例):

# coding:utf-8
import sys
#从转换的.py文件内调用类
import cv2
from untitled import Ui_Dialog
from PyQt5 import QtWidgets
 
from PyQt5.QtWidgets import *

2.打开图像

代码如下(示例):

class myWin(QtWidgets.QWidget, Ui_Dialog):
 
    def __init__(self):
        super(myWin, self).__init__()
        self.setupUi(self)
 
    def openFileButton(self):
        imgName, imgType  = QFileDialog.getOpenFileName(self,"打开文件","./","files(*.*)")
        img = cv2.imread(imgName)
        cv2.imwrite("temp/original.jpg", img)
        height, width, pixels = img.shape
        print("width,height",width,height)
        print("self.label.width()",self.label.width())
        print("self.label.height()",self.label.height())
 
        if width>(self.label.width()):
 
            rwidth=self.label.width()
            print("rwidth-if,rheight-if", width, rheight)
        elif height>(self.label.height()):
 
            rheight=self.label.height()
            print("rwidth-elif,rheight-elfi", rwidth, rheight)
        elif ((self.label.height())-height)<((self.label.width())-width):
 
            rheight=self.label.height()
            print("rwidth-elif,rheight-elfi", rwidth, rheight)
        else:
            print("rheight,rwidth", height, width)
            rheight = height
            rwidth = width
 
        frame = cv2.resize(img, (int(rwidth), int(rheight)))
        print("rwidth-elif,rheight-elfi", rwidth, rheight)
        img2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # opencv读取的bgr格式图片转换成rgb格式
        _image = QtGui.QImage(img2[:], img2.shape[1], img2.shape[0], img2.shape[1] * 3, QtGui.QImage.Format_RGB888)
        jpg_out = QtGui.QPixmap(_image).scaled(rwidth, rheight) #设置图片大小
        self.label.setPixmap(jpg_out) #设置图片显示
 
 
    def saveFileButton(self):
        img = cv2.imread("temp/original.jpg")
        file_path = QFileDialog.getSaveFileName(self, "save file", "./save/test","jpg files (*.jpg);;all files(*.*)")
        print(file_path[0])
        cv2.imwrite(file_path[0], img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
 

3.识别图像特征:

代码如下(示例):

    def recogPerson(self):
        import cv2
        img = cv2.imread("temp/original.jpg")
        face_detect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        eye_detect = cv2.CascadeClassifier('haarcascade_eye.xml')
 
        # 灰度处理
        gray = cv2.cvtColor(img, code=cv2.COLOR_BGR2GRAY)
        # 检查人脸 按照1.1倍放到 周围最小像素为5
        face_zone = face_detect.detectMultiScale(gray,1.3,5)
        # print ('识别人脸的信息:\n',face_zone)
 
 
        ints = 0
        # 绘制矩形和圆形检测人脸
        for x, y, w, h in face_zone:
            ints += 1
            # 绘制矩形人脸区域
            if w < 101:
                cv2.rectangle(img, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2)
                # 绘制圆形人脸区域 radius表示半径
                cv2.circle(img, center=(x + w // 2, y + h // 2), radius=w // 2, color=[0, 255, 0], thickness=2)
                roi_face = gray[y:y + h, x:x + w]  # 灰度图
                roi_color = img[y:y + h, x:x + w]  # 彩色图
                eyes = eye_detect.detectMultiScale(roi_face)
 
 
 
        font1 = "Current number:";
        font2 = "pcs";
        font = cv2.FONT_HERSHEY_TRIPLEX  # 使用默认字体
        cv2.putText(img, font1 + str(ints) + font2, (10, 28), font, 1.2, (0, 255, 0), 1)
        #cv2.namedWindow("Easmount-CSDN", 0)
        #cv2.imshow("Easmount-CSDN", img)
        cv2.imwrite("save/recognPerson.jpg", img)
        #cv2.waitKey(0)
 
        #显示人数到窗体
        self.textEdit.setPlainText(str(ints))
        #self.textEdit.setPlainText('Hello PyQt5!\n单击按钮')
 
        #显示相片到label_2
        img = cv2.imread("save/recognPerson.jpg")
 
            rheight = height
            rwidth = width
        frame = cv2.resize(img, (int(rwidth), int(rheight)))
        img2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # opencv读取的bgr格式图片转换成rgb格式
 
        jpg_out = QtGui.QPixmap(_image).scaled(rwidth, rheight) #设置图片大小
        self.label_2.setPixmap(jpg_out) #设置图片显示
 
 
 
if __name__=="__main__":
 
    app=QtWidgets.QApplication(sys.argv)
    Widget=myWin()
    Widget.show()
    sys.exit(app.exec_())

4.运行结果如下: 

三、在线协助: 

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!

你可能感兴趣的:(Python,python,开发语言,qt,opencv,人工智能)