基于上一篇理论分析,今天我们探讨学习下ResNet的代码实现,如果没有看过<<经典网络学习-ResNet>>建议先看下。在我写这篇前,我也调研了网上的其他实现,都不如pytorch官方源码实现好,所以官方版本讲解如何实现resNet
这里依然放上论文中的架构图:
图中的每一层其实就是BasicBlock或者BotteNeck结构。这里给出ResNet-34结构图如图所示,图中的虚线连接线是表示通道数不同,需要调整通道 使用零填充或者是1x1的卷积来达到这一目的。
## 残差结构 残差结构图如下:代码解释为:
conv->bn->relu->conv->bn->shortcut->relu
# 用于resnet18和resnet34基本残差结构块
#downsample对应虚线的残差结构
# # Downsampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2
class BasicBlock(nn.Module):
#通道扩充系数,基数是64
expansion: int = 1
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError("BasicBlock only supports groups=1 and base_width=64")
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = norm_layer(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = norm_layer(out_channels)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
#论文中模型架构的虚线部分,需要下采样
if self.downsample is not None:
identity = self.downsample(x)
#shortcut连接
out += identity
out = self.relu(out)
return out
#定义3x3带padding的卷积
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
"""3x3 convolution with padding"""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=dilation,
groups=groups,
bias=False,
dilation=dilation,
)
bias = False
所以,卷积之后,如果要接BN操作,最好是不设置偏置,因为不起作用,而且占显卡内存。
class Bottleneck(nn.Module):
# pytorch 实现 Bottleneck 是在3x3卷积(self.conv2)的设置stride = 2
# 原始论文(https://arxiv.org/abs/1512.03385)中实现 Bottleneck 是在1x1卷积(self.conv1)的设置stride = 2
# 这样做提高了准确率。 这个变体也被称为ResNet V1.5 参考https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
#通道扩充系数
expansion: int = 4
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int = 1,
downsample: Optional[nn.Module] = None,
groups: int = 1,
base_width: int = 64,
dilation: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(out_channels * (base_width / 64.0)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(in_channels, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, out_channels * self.expansion)
self.bn3 = norm_layer(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x: Tensor) -> Tensor:
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
num_classes: int = 1000,
zero_init_residual: bool = False,
groups: int = 1,
width_per_group: int = 64,
replace_stride_with_dilation: Optional[List[bool]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.in_channels = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError(
"replace_stride_with_dilation should be None "
f"or a 3-element tuple, got {replace_stride_with_dilation}"
)
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = norm_layer(self.in_channels)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch(每个残差块最后一个BN用零初始化),
# so that the residual branch starts with zeros, and each residual block behaves like an identity.(这样每个残差块从零开始,就好像identity)
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 (精度提高0.2~0.3)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
# 创建conv2_x,conv3_x,conv4_x,conv5_x层
# channel:conv2/3/4/5对应的各种深度的残差结构主分支上的第一个卷积核的个数/通道数
# 一个卷积层的残差结构个数
def _make_layer(
self,
#残差块类型:可以是BasicBlock或者Bottleneck
block: Type[Union[BasicBlock, Bottleneck]],
#残差快第一个卷积的输入通道
channels: int,
#残差块数量
blocks: int,
stride: int = 1,
dilate: bool = False,
) -> nn.Sequential:
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
# 对于resnet50/101/152层的结构,第一层为虚线残差,进行下采样
# 对于resnet18/34层的网络会跳过这个判断,因为输入输出shape一致,无需下采样
# conv2_x的第一层下采样只需增加channel,不要改变高宽(stride = 1)因为输入输出shape都为64×64
if stride != 1 or self.in_channels != channels * block.expansion:
downsample = nn.Sequential(
conv1x1(self.in_channels, channels * block.expansion, stride),
norm_layer(channels * block.expansion),
)
layers = []
layers.append(
block(
self.in_channels, channels, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
)
)
self.in_channels = channels * block.expansion
for _ in range(1, blocks):
layers.append(
block(
self.in_channels,
channels,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation,
norm_layer=norm_layer,
)
)
#Sequential类来实现简单的顺序连接模型
return nn.Sequential(*layers)
def _forward_impl(self, x: Tensor) -> Tensor:
'''正向传播实现函数'''
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
#全局的平均池化
x = self.avgpool(x)
x = torch.flatten(x, 1)
# 最后的全连接层
x = self.fc(x)
return x
def forward(self, x: Tensor) -> Tensor:
'''
正向传播
'''
return self._forward_impl(x)
以上代码都来自pytorch源码,有删减便于理解,以上全部代放到了github仓库