SENet-Model(pytorch版本)

S E N e t − M o d e l ( p y t o r c h 版 本 ) SENet-Model(pytorch版本) SENetModel(pytorch)

import torch.nn as nn
from torch.hub import load_state_dict_from_url
from torchvision.models import ResNet
from torch import nn
from sklearn.linear_model import LogisticRegression
import torch.nn as nn
import torch.nn.functional as F
import torch
class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)


def conv3x3(in_planes, out_planes, stride=1):
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)


class SEBasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None,
                 *, reduction=16):
        super(SEBasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, 1)
        self.bn2 = nn.BatchNorm2d(planes)
        self.se = SELayer(planes, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


class SEBottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
                 base_width=64, dilation=1, norm_layer=None,
                 *, reduction=16):
        super(SEBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.se = SELayer(planes * 4, reduction)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)
        out = self.se(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out


def se_resnet18(num_classes=5):
    """Constructs a ResNet-18 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(SEBasicBlock, [2, 2, 2, 2], num_classes=num_classes)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model


def se_resnet34(num_classes=5):
    """Constructs a ResNet-34 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(SEBasicBlock, [3, 4, 6, 3], num_classes=num_classes)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model


def se_resnet50(num_classes=5, pretrained=False):
    """Constructs a ResNet-50 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(SEBottleneck, [3, 4, 6, 3], num_classes=num_classes)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    if pretrained:
        model.load_state_dict(load_state_dict_from_url(
            "https://github.com/moskomule/senet.pytorch/releases/download/archive/seresnet50-60a8950a85b2b.pkl"))
    return model


def se_resnet101(num_classes=5):
    """Constructs a ResNet-101 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(SEBottleneck, [3, 4, 23, 3], num_classes=num_classes)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model


def se_resnet152(num_classes=5):
    """Constructs a ResNet-152 model.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(SEBottleneck, [3, 8, 36, 3], num_classes=num_classes)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model


# 随机生成输入数据
rgb = torch.randn(1, 3, 512, 512)
# 定义网络
net = se_resnet18(num_classes=8)
# 前向传播
out = net(rgb)
print('-----'*5)
# 打印输出大小
print(out.shape)
print('-----'*5)

在这里插入图片描述

# 随机生成输入数据
rgb = torch.randn(1, 3, 512, 512)
# 定义网络
net = se_resnet50(num_classes=8)
# 前向传播
out = net(rgb)
print('-----'*5)
# 打印输出大小
print(out.shape)
print('-----'*5)

在这里插入图片描述

# 随机生成输入数据
rgb = torch.randn(1, 3, 512, 512)
# 定义网络
net = se_resnet101(num_classes=8)
# 前向传播
out = net(rgb)
print('-----'*5)
# 打印输出大小
print(out.shape)
print('-----'*5)

在这里插入图片描述

你可能感兴趣的:(SENet-Model(pytorch版本))