python混合整数线性规划_Python 实现整数线性规划:分枝定界法(Branch and Bound)...

今天做作业,要实现整数线性规划的分枝定界法算法。找了一些网上的博客,发现都很屎,感觉自己写的这个比较清楚、规范,所以在此记录。如有错误,请指正。

from scipy.optimize import linprog

import numpy as np

import math

import sys

from queue import Queue

class ILP():

def __init__(self, c, A_ub, b_ub, A_eq, b_eq, bounds):

# 全局参数

self.LOWER_BOUND = -sys.maxsize

self.UPPER_BOUND = sys.maxsize

self.opt_val = None

self.opt_x = None

self.Q = Queue()

# 这些参数在每轮计算中都不会改变

self.c = -c

self.A_eq = A_eq

self.b_eq = b_eq

self.bounds = bounds

# 首先计算一下初始问题

r = linprog(-c, A_ub, b_ub, A_eq, b_eq, bounds)

# 若最初问题线性不可解

if not r.success:

raise ValueError('Not a feasible problem!')

# 将解和约束参数放入队列

self.Q.put((r, A_ub, b_ub))

def solve(self):

while not self.Q.empty():

# 取出当前问题

res, A_ub, b_ub = self.Q.get(block=False)

# 当前最优值小于总下界,则排除此区域

if -res.fun < self.LOWER_BOUND:

continue

# 若结果 x 中全为整数,则尝试更新全局下界、全局最优值和最优解

if all(list(map(lambda f: f.is_integer(), res.x))):

if self.LOWER_BOUND < -res.fun:

self.LOWER_BOUND = -res.fun

if self.opt_val is None or self.opt_val < -res.fun:

self.opt_val = -res.fun

self.opt_x = res.x

continue

# 进行分枝

else:

# 寻找 x 中第一个不是整数的,取其下标 idx

idx = 0

for i, x in enumerate(res.x):

if not x.is_integer():

break

idx += 1

# 构建新的约束条件(分割

new_con1 = np.zeros(A_ub.shape[1])

new_con1[idx] = -1

new_con2 = np.zeros(A_ub.shape[1])

new_con2[idx] = 1

new_A_ub1 = np.insert(A_ub, A_ub.shape[0], new_con1, axis=0)

new_A_ub2 = np.insert(A_ub, A_ub.shape[0], new_con2, axis=0)

new_b_ub1 = np.insert(

b_ub, b_ub.shape[0], -math.ceil(res.x[idx]), axis=0)

new_b_ub2 = np.insert(

b_ub, b_ub.shape[0], math.floor(res.x[idx]), axis=0)

# 将新约束条件加入队列,先加最优值大的那一支

r1 = linprog(self.c, new_A_ub1, new_b_ub1, self.A_eq,

self.b_eq, self.bounds)

r2 = linprog(self.c, new_A_ub2, new_b_ub2, self.A_eq,

self.b_eq, self.bounds)

if not r1.success and r2.success:

self.Q.put((r2, new_A_ub2, new_b_ub2))

elif not r2.success and r1.success:

self.Q.put((r1, new_A_ub1, new_b_ub1))

elif r1.success and r2.success:

if -r1.fun > -r2.fun:

self.Q.put((r1, new_A_ub1, new_b_ub1))

self.Q.put((r2, new_A_ub2, new_b_ub2))

else:

self.Q.put((r2, new_A_ub2, new_b_ub2))

self.Q.put((r1, new_A_ub1, new_b_ub1))

def test1():

""" 此测试的真实最优解为 [4, 2] """

c = np.array([40, 90])

A = np.array([[9, 7], [7, 20]])

b = np.array([56, 70])

Aeq = None

beq = None

bounds = [(0, None), (0, None)]

solver = ILP(c, A, b, Aeq, beq, bounds)

solver.solve()

print("Test 1's result:", solver.opt_val, solver.opt_x)

print("Test 1's true optimal x: [4, 2]\n")

def test2():

""" 此测试的真实最优解为 [2, 4] """

c = np.array([3, 13])

A = np.array([[2, 9], [11, -8]])

b = np.array([40, 82])

Aeq = None

beq = None

bounds = [(0, None), (0, None)]

solver = ILP(c, A, b, Aeq, beq, bounds)

solver.solve()

print("Test 2's result:", solver.opt_val, solver.opt_x)

print("Test 2's true optimal x: [2, 4]\n")

if __name__ == '__main__':

test1()

test2()

运行结果截图:

你可能感兴趣的:(python混合整数线性规划)