numpy和torch的数据格式


title: Pytorch学习笔记-numpy和torch的数据格式

numpy和torch的数据格式学习笔记

"""
对比学习numpy与tensor数据格式
"""

import torch
import numpy as np

np_data = np.arange(6).reshape((2, 3))
torch_data = torch.from_numpy(np_data)  # numpy转torch
tensor2array = torch_data.numpy()  # torch数据格式转numpy
print(
    '\nnumpy array:', np_data,  # [[0 1 2], [3 4 5]]
    '\ntorch tensor:', torch_data,  # 0  1  2 \n 3  4  5    [torch.LongTensor of size 2x3]
    '\ntensor to array:', tensor2array,  # [[0 1 2], [3 4 5]]
)

# ------------------------torch运算-------------------------#
'''
官网API:https://pytorch.org/docs/stable/torch.html
'''
# abs 绝对值计算
data = [-1, -2, 1, 2]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
print(
    '\nabs',
    '\nnumpy: ', np.abs(data),  # [1 2 1 2]
    '\ntorch: ', torch.abs(tensor)  # [1 2 1 2]
)

# sin   三角函数 sin
print(
    '\nsin',
    '\nnumpy: ', np.sin(data),  # [-0.84147098 -0.90929743  0.84147098  0.90929743]
    '\ntorch: ', torch.sin(tensor)  # [-0.8415 -0.9093  0.8415  0.9093]
    # numpy数据最长小数点后9位,tensor最长小数点后4位
)

# mean  均值
print(
    '\nmean',
    '\nnumpy: ', np.mean(data),  # 0.0
    '\ntorch: ', torch.mean(tensor)  # 0.0
)

# --------------矩阵运算------------------#
# matrix multiplication 矩阵点乘
data = [[1, 2], [3, 4]]
tensor = torch.FloatTensor(data)  # 转换成32位浮点 tensor
# correct method
print(
    '\nmatrix multiplication (matmul)',
    '\nnumpy: ', np.matmul(data, data),  # numpy计算矩阵方法 [[7, 10], [15, 22]]
    '\ntorch: ', torch.mm(tensor, tensor)  # torch计算矩阵方法 [[7., 10.], [15., 22.]]
)

# !!!!  下面是错误的方法 !!!!
data = np.array(data)  # array格式
print(
    '\nmatrix multiplication (dot)',
    '\nnumpy: ', data.dot(data),  # [[7, 10], [15, 22]] 在numpy 中可行
    # '\ntorch: ', tensor.dot(tensor)  # torch 会转换成 [1,2,3,4].dot([1,2,3,4) = 30.0,这句有问题
)

a = np.arange(3 * 4 * 5 * 6).reshape((3, 4, 5, 6))
b = np.arange(3 * 4 * 5 * 6)[::-1].reshape((5, 4, 6, 3))
# 2D以上,np.dot(a, b)相当于sum(a * b)
print("result = {}".format(np.dot(a, b)[2, 3, 2, 1, 2, 2]))
print(f"result2 = {sum(a[2, 3, 2, :] * b[1, 2, :, 2])}")


你可能感兴趣的:(Pytorch,numpy,python,深度学习)