pytorch初始化权重

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        elif isinstance(m, nn.BatchNorm2d):
            nn.init.constant_(m.weight, 1.)
            nn.init.constant_(m.bias, 0.)
        elif isinstance(m, nn.GroupNorm):
            nn.init.constant_(m.weight, 1.)
            nn.init.constant_(m.bias, 0.)

你可能感兴趣的:(感悟,python,pytorch)