关于tensor的reshape操作

先创建一个tensor

>>> import torch
>>> a = torch.rand(1, 4, 3)               
>>> print(a) 
tensor([[[0.0132, 0.7809, 0.0468],
         [0.2689, 0.6871, 0.2538],
         [0.7656, 0.5300, 0.2499],
         [0.2500, 0.4967, 0.0685]]])
 

分类进行reshape操作时,假如第二维代表类别,直接reshape使得数据对应结果会错

>>> b = a.reshape(-1,4)
>>> print(b) 
tensor([[0.0132, 0.7809, 0.0468, 0.2689],
        [0.6871, 0.2538, 0.7656, 0.5300],
        [0.2499, 0.2500, 0.4967, 0.0685]])
 

要得到正确的结果,必须先transpose,再进行reshape

>>> c = a.transpose(1,2) 
>>> print(c.shape) 
torch.Size([1, 3, 4])
>>> d = c.reshape(-1,4) 
>>> print(d) 
tensor([[0.0132, 0.2689, 0.7656, 0.2500],
        [0.7809, 0.6871, 0.5300, 0.4967],
        [0.0468, 0.2538, 0.2499, 0.0685]])
 

你可能感兴趣的:(深度学习,深度学习,python,pytorch)