Pytorch的 Dataset 的使用

此案例教我们加载并处理TorchVision的FashionMNIST Dataset。
  • root 目录是 train/test data 存储的地方

  • download=True 如果root目录没有,则从网上下载

  • transform and target_transform specify the feature and label transformations

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

运行得到的结果是这样的:

Pytorch的 Dataset 的使用_第1张图片

 遍历并可视化数据集

给数据集手动加上序号sample_idx,并用matplotlib进行绘制:

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
    sample_idx = torch.randint(len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

traning_data

torch.randint(len(training_data), size=(1,)).item()

Pytorch的 Dataset 的使用_第2张图片

 

为我的文件自定义一个Dataset

一个自定义的Dataset必须有三个函数:__init__, __len__, and __getitem__

图片存储在img_dir

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

__init__函数  初始化包含图像、注释文件和两个转换的目录。

labels.csv 文件长这个样子:

tshirt1.jpg, 0
tshirt2.jpg, 0
......
ankleboot999.jpg, 9

__len__函数 

返回样例sample的个数

__getitem__函数

从数据集中加载并返回一个给定index的样本。 Based on the index, it identifies the image’s location on disk, converts that to a tensor using read_image, retrieves the corresponding label from the csv data in self.img_labels, calls the transform functions on them (if applicable), and returns the tensor image and corresponding label in a tuple.

实际情况更常使用 DataLoader

The Dataset retrieves our dataset’s features and labels one sample at a time. While training a model, we typically want to pass samples in “minibatches”, reshuffle the data at every epoch to reduce model overfitting, and use Python’s multiprocessing to speed up data retrieval.

DataLoader 是一个能做到上述功能的迭代器API。

from torch.utils.data import DataLoader

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

We have loaded that dataset into the DataLoader and can iterate through the dataset as needed. Each iteration below returns a batch of train_features and train_labels (containing batch_size=64 features and labels respectively). Because we specified shuffle=True, after we iterate over all batches the data is shuffled (for finer-grained control over the data loading order, take a look at Samplers)

# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

 Pytorch的 Dataset 的使用_第3张图片

 

你可能感兴趣的:(模型训练,python,深度学习)