论文投稿指南——收藏|SCI写作投稿发表全流程

论文投稿指南——收藏|SCI写作投稿发表全流程_第1张图片

关注“PandaCVer”公众号

>>>深度学习Tricks,第一时间送达<<<

目录

一、规范写作标准格式

二、明确论文投稿流程

三、了解论文修改意见

四、论文投稿相关建议


一、规范写作标准格式

Abstract 摘要:文章的简介和概述目的、方法、结果、结论。

Keyword 关键词:3 ~ 5 个本文最相关的词语,可以从标题和摘要中提取。

Main text 正文:包括 introduction 、method(方法学)、results(结果)、discussion 。

Reference 参考文献:文章的参考文献,需要按照杂志社要求更改参考文献的格式。

注意,文章的图表需要按照期刊的要求制作,放在文章参考文献后。Figure legend 图注和 Table legend 表注,需要你对图表中的关键内容和标识的介绍描述。

二、明确论文投稿流程

筛选期刊需要考虑以下 4 个维度:影响因子、期刊领域、审稿或见刊时间是否在你的预期以及版面费。

全部权衡后可以放心选刊。在投递后,期刊编辑先进行初审,初审通过后派发给审稿人,2~4 日内审稿人给予修稿意见。

三、了解论文修改意见

责任编辑会根据审稿人的意见给出一些修改建议,包括:拒稿(Rejected);大修(Major Revision);小修(Minor Revision);录用(Accepted)。

投稿系统中通常会显示以下 3 类状态:

(1)Required review completed:已收集到足够数量的审稿人意见

(2)Decision in Process:责任编辑正在酝酿意见

(3)Rejected/Major Revision/Minor Revision/Accepted:最终意见

四、论文投稿相关建议

(一)正视投稿

对于第一次投稿的同学们来说,投稿、改稿也是一个提高自身学术表达水平的过程。因此,不要把投稿视为研究的剩余物,而要把投稿视为学术生活的一个重要组成部分,认真研究如何投稿。

(二)固定阅读

每一类刊物、每一本刊物,都有自己的历史、风格,通过固定阅读,你可以知晓这些刊物的术取向和选稿要求,做到知彼知己、心中有数。有了必要的阅读积累,再与期刊编辑沟通,便有了更多的共享知识,也会更加顺畅。

(三)不要海投

很多期刊都严禁一稿多投,而且无的放矢的海投也绝非良策。最好平时就有意识地阅读一些学术刊物,从研究阶段就熟悉、了解这些刊物,最后成文、投稿就会更加自然、顺畅。对于有些综合刊物,建议投递打印稿。

(四)经常开会

很多时候,学术期刊约稿不是“看人”,而是“看文”,学刊编辑经常旁听会议,如果你的文章很棒,又恰好符合在场学刊的选题需求的话,他们会主动来找你约稿的。

(五)多方核实

现在很多刊物都有经费支持,甚至还有国家社科基金资助,一般来说,多数刊物不收版面费。网络上的投稿一定要辨明真假。一般来说,那些带有不规律的数字的邮箱、域名多半是假的。一定要多方核实,不要轻易上当。

# -------------------------------------------------------------------------
# Swin Transfromer
# https://arxiv.org/abs/2103.14030
 
import torch
import torch.nn as nn
import torch.nn.functional as F
 
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
 
class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
    """
 
    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
 
        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
 
        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
 
        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index)
 
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)
 
    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
 
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))
 
        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)
 
        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)
 
        attn = self.attn_drop(attn)
 
        # print(attn.dtype, v.dtype)
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x
 
def window_reverse(windows, window_size, H, W):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image
    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x
 
class SwinTransformerLayer(nn.Module):
    r""" Swin Transformer Layer.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """
 
    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        # if min(self.input_resolution) <= self.window_size:
        #     # if window size is larger than input resolution, we don't partition windows
        #     self.shift_size = 0
        #     self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
 
        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
 
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
 
    def create_mask(self, H, W):
        # calculate attention mask for SW-MSA
        img_mask = torch.zeros((1, H, W, 1))  # 1 H W 1
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1
 
        mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
 
        return attn_mask
 
    def forward(self, x):
        # reshape x[b c h w] to x[b l c]
        _, _, H_, W_ = x.shape
 
        Padding = False
        if min(H_, W_) < self.window_size or H_ % self.window_size!=0:
            Padding = True
            # print(f'img_size {min(H_, W_)} is less than (or not divided by) window_size {self.window_size}, Padding.')
            pad_r = (self.window_size - W_ % self.window_size) % self.window_size
            pad_b = (self.window_size - H_ % self.window_size) % self.window_size
            x = F.pad(x, (0, pad_r, 0, pad_b))
 
        # print('2', x.shape)
        B, C, H, W = x.shape
        L = H * W
        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)  # b, L, c
 
        # create mask from init to forward
        if self.shift_size > 0:
            attn_mask = self.create_mask(H, W).to(x.device)
        else:
            attn_mask = None
 
        shortcut = x
        x = self.norm1(x)
        x = x.view(B, H, W, C)
 
        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x
 
        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C
 
        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C
 
        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C
 
        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)
 
        # FFN
        x = shortcut + self.drop_path(x)
        x = x + self.drop_path(self.mlp(self.norm2(x)))
 
        x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)  # b c h w
 
        if Padding:
            x = x[:, :, :H_, :W_]  # reverse padding
 
        return x

关于算法改进及论文投稿可关注并留言博主的CSDN/QQ

>>>>一起交流!互相学习!共同进步!<<<<

你可能感兴趣的:(论文发表指南,人工智能,深度学习,python,目标检测)