微服务(SpringCloud)中一些重要服务组件与技术总结

文章目录

  • 前言
  • 一、认识微服务
    • 1.1.单体架构
    • 1.2.分布式架构
    • 1.3.微服务
    • 1.4.SpringCloud
    • 1.5.总结
  • 二、Eureka注册中心
    • 2.1.Eureka的结构和作用
  • 三、Nacos注册中心
    • 3.1Nacos与Eureka的区别
  • 四、统一网关Gateway
    • 4.1为什么需要网关
    • 4.2网关的技术实现
    • 4.3搭建网关服务
  • 五、初识Docker
    • 5.1 什么是Docker
    • 5.2Docker和虚拟机的区别
  • 六、RabbitMQ
    • 6.1同步和异步通讯
      • 6.1.1同步通讯
      • 6.1.2异步通讯
    • 6.2技术对比:


前言

#博学谷IT学技术支持#


一、认识微服务

1.1.单体架构

微服务(SpringCloud)中一些重要服务组件与技术总结_第1张图片
单体架构的优缺点如下:

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高(维护困难、升级困难)

1.2.分布式架构

微服务(SpringCloud)中一些重要服务组件与技术总结_第2张图片
分布式架构的优缺点:

优点:

  • 降低服务耦合
  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

1.3.微服务

微服务的架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题
    微服务(SpringCloud)中一些重要服务组件与技术总结_第3张图片
    微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚,低耦合。

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

但方案该怎么落地?选用什么样的技术栈?全球的互联网公司都在积极尝试自己的微服务落地方案。

其中在Java领域最引人注目的就是SpringCloud提供的方案了。

1.4.SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud。

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的开箱即用体验。

其中常见的组件包括:
微服务(SpringCloud)中一些重要服务组件与技术总结_第4张图片

1.5.总结

  • 单体架构:简单方便,高度耦合,扩展性差,适合小型项目。例如:学生管理系统

  • 分布式架构:松耦合,扩展性好,但架构复杂,难度大。适合大型互联网项目,例如:京东、淘宝

  • 微服务:一种良好的分布式架构方案

    ①优点:拆分粒度更小、服务更独立、耦合度更低

    ②缺点:架构非常复杂,运维、监控、部署难度提高

  • SpringCloud是微服务架构的一站式解决方案,集成了各种优秀微服务功能组件

二、Eureka注册中心

假如我们的服务提供者user-service部署了多个实例,如图:

微服务(SpringCloud)中一些重要服务组件与技术总结_第5张图片
大家思考几个问题:

  • order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
  • 有多个user-service实例地址,order-service调用时该如何选择?
  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

2.1.Eureka的结构和作用

这些问题都需要利用SpringCloud中的注册中心来解决,其中最广为人知的注册中心就是Eureka,其结构如下:
微服务(SpringCloud)中一些重要服务组件与技术总结_第6张图片
回答之前的各个问题。

问题1:order-service如何得知user-service实例地址?

获取地址信息的流程如下:

  • user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。这个叫服务注册
  • eureka-server保存服务名称到服务实例地址列表的映射关系
  • order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取

问题2:order-service如何从多个user-service实例中选择具体的实例?

  • order-service从实例列表中利用负载均衡算法选中一个实例地址
  • 向该实例地址发起远程调用

问题3:order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

  • user-service会每隔一段时间(默认30秒)向eureka-server发起请求,报告自己状态,称为心跳
  • 当超过一定时间没有发送心跳时,eureka-server会认为微服务实例故障,将该实例从服务列表中剔除
  • order-service拉取服务时,就能将故障实例排除了

三、Nacos注册中心

国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。

3.1Nacos与Eureka的区别

Nacos的服务实例分为两种l类型:

  • 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。

  • 非临时实例:如果实例宕机,不会从服务列表剔除,也可以叫永久实例。

配置一个服务实例为永久实例:

spring:
  cloud:
    nacos:
      discovery:
        ephemeral: false # 设置为非临时实例

Nacos和Eureka整体结构类似,服务注册、服务拉取、心跳等待,但是也存在一些差异:
微服务(SpringCloud)中一些重要服务组件与技术总结_第7张图片

  • Nacos与eureka的共同点

    • 都支持服务注册和服务拉取
    • 都支持服务提供者心跳方式做健康检测
  • Nacos与Eureka的区别

    • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
    • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除
    • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
    • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

四、统一网关Gateway

4.1为什么需要网关

微服务(SpringCloud)中一些重要服务组件与技术总结_第8张图片

4.2网关的技术实现

在SpringCloud中网关的实现包括两种:

  • gateway
  • zuul

Zuul是基于Servlet的实现,属于阻塞式编程。而SpringCloudGateway则是基于Spring5中提供的WebFlux,属于响应式编程的实现,具备更好的性能。

4.3搭建网关服务

微服务(SpringCloud)中一些重要服务组件与技术总结_第9张图片
网关搭建步骤:

  • 创建项目,引入nacos服务发现和gateway依赖
  • 配置application.yml,包括服务基本信息、nacos地址、路由
  • 路由配置包括:
    路由id:路由的唯一标示
    路由目标(uri):路由的目标地址,http代表固定地址,lb代表根据服务名负载均衡
    路由断言(predicates):判断路由的规则,
    路由过滤器(filters):对请求或响应做处理

五、初识Docker

5.1 什么是Docker

微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。

  • 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。
  • 在数百上千台服务中重复部署,环境不一定一致,会遇到各种问题

Docker解决了

  • 应用部署的环境问题
  • 依赖兼容问题
  • 操作系统环境差异

Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题?

  • Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像
  • Docker应用运行在容器中,使用沙箱机制,相互隔离

Docker如何解决开发、测试、生产环境有差异的问题?

  • Docker镜像中包含完整运行环境,包括系统函数库,仅依赖系统的Linux内核,因此可以在任意Linux操作系统上运行

Docker是一个快速交付应用、运行应用的技术,具备下列优势:

  • 可以将程序及其依赖、运行环境一起打包为一个镜像,可以迁移到任意Linux操作系统
  • 运行时利用沙箱机制形成隔离容器,各个应用互不干扰
  • 启动、移除都可以通过一行命令完成,方便快捷

5.2Docker和虚拟机的区别

Docker可以让一个应用在任何操作系统中非常方便的运行。而以前我们接触的虚拟机,也能在一个操作系统中,运行另外一个操作系统,保护系统中的任何应用。

两者有什么差异呢?

虚拟机(virtual machine)是在操作系统中模拟硬件设备,然后运行另一个操作系统,比如在 Windows 系统里面运行 Ubuntu 系统,这样就可以运行任意的Ubuntu应用了。

Docker仅仅是封装函数库,并没有模拟完整的操作系统,如图:
微服务(SpringCloud)中一些重要服务组件与技术总结_第10张图片
对比来看:
微服务(SpringCloud)中一些重要服务组件与技术总结_第11张图片
小结:

Docker和虚拟机的差异:

  • docker是一个系统进程;虚拟机是在操作系统中的操作系统

  • docker体积小、启动速度快、性能好;虚拟机体积大、启动速度慢、性能一般

六、RabbitMQ

6.1同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。
微服务(SpringCloud)中一些重要服务组件与技术总结_第12张图片
两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。

6.1.1同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
微服务(SpringCloud)中一些重要服务组件与技术总结_第13张图片
总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

6.1.2异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
微服务(SpringCloud)中一些重要服务组件与技术总结_第14张图片
Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。
好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。

6.2技术对比:

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQ ActiveMQ RocketMQ Kafka
公司/社区 Rabbit Apache 阿里 Apache
开发语言 Erlang Java Java Scala&Java
协议支持 AMQP,XMPP,SMTP,STOMP OpenWire,STOMP,REST,XMPP,AMQP 自定义协议 自定义协议
可用性 一般
单机吞吐量 一般 非常高
消息延迟 微秒级 毫秒级 毫秒级 毫秒以内
消息可靠性 一般 一般
追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

你可能感兴趣的:(微服务,spring,cloud,java)