动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现

%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

1. 独热编码

动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现_第1张图片

F.one_hot(torch.tensor([0, 2]), len(vocab))    '''
tensor([[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0],
        [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 0, 0]])    '''

我们每次采样的小批量数据形状是二维张量: (批量大小,时间步数)。 one_hot函数将这样一个小批量数据转换成三维张量, 张量的最后一个维度等于词表大小(len(vocab))。 我们经常转换输入的维度,以便获得形状为 (时间步数,批量大小,词表大小)的输出。 这将使我们能够更方便地通过最外层的维度, 一步一步地更新小批量数据的隐状态。

X = torch.arange(10).reshape((2, 5))
F.one_hot(X.T, 28).shape            '''
torch.Size([5, 2, 28])              '''

2. 初始化模型参数

接下来,我们初始化循环神经网络模型的模型参数。 隐藏单元数num_hiddens是一个可调的超参数。 当训练语言模型时,输入和输出来自相同的词表。 因此,它们具有相同的维度,即词表的大小。torch.randn()

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device) * 0.01

    ''' 隐藏层参数 '''
    W_xh = normal((num_inputs, num_hiddens))
    W_hh = normal((num_hiddens, num_hiddens))
    b_h = torch.zeros(num_hiddens, device=device)
    ''' 输出层参数 '''
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    ''' 附加梯度 '''
    params = [W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

3. 循环神经网络模型

为了定义循环神经网络模型, 我们首先需要一个init_rnn_state函数在初始化时返回隐状态。 这个函数的返回是一个张量,张量全用0填充, 形状为(批量大小,隐藏单元数)。 在后面的章节中我们将会遇到隐状态包含多个变量的情况, 而使用元组可以更容易地处理些。

def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

下面的rnn函数定义了如何在一个时间步内计算隐状态和输出。 循环神经网络模型通过inputs最外层的维度实现循环, 以便逐时间步更新小批量数据的隐状态H, 此外,这里使用tanh函数作为激活函数。 如多层感知机章节所述, 当元素在实数上满足均匀分布时,tanh函数的平均值为0。

def rnn(inputs, state, params):
    ''' inputs的形状:(时间步数量,批量大小,词表大小) '''
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = [] 
    ''' X的形状:(批量大小,词表大小) '''
    for X in inputs:
        H = torch.tanh(torch.mm(X, W_xh) + torch.mm(H, W_hh) + b_h)
        Y = torch.mm(H, W_hq) + b_q
        outputs.append(Y)
    ''' 输出形状是(时间步数×批量大小,词表大小) '''
    return torch.cat(outputs, dim=0), (H,)

定义了所有需要的函数之后,接下来我们创建一个类来包装这些函数, 并存储从零开始实现的循环神经网络模型的参数。

class RNNModelScratch: 
    """从零开始实现的循环神经网络模型"""
    def __init__(self, vocab_size, num_hiddens, device,
                 get_params, init_state, forward_fn):
        self.vocab_size, self.num_hiddens = vocab_size, num_hiddens
        self.params = get_params(vocab_size, num_hiddens, device)
        self.init_state, self.forward_fn = init_state, forward_fn

    def __call__(self, X, state):
        X = F.one_hot(X.T, self.vocab_size).type(torch.float32)
        return self.forward_fn(X, state, self.params)

    def begin_state(self, batch_size, device):
        return self.init_state(batch_size, self.num_hiddens, device)

让我们检查输出是否具有正确的形状。 例如,隐状态的维数是否保持不变。

num_hiddens = 512
net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
state = net.begin_state(X.shape[0], d2l.try_gpu())
Y, new_state = net(X.to(d2l.try_gpu()), state)
Y.shape, len(new_state), new_state[0].shape                        '''

(torch.Size([10, 28]), 1, torch.Size([2, 512]))                    '''

我们可以看到输出形状是(时间步数×批量大小,词表大小), 而隐状态形状保持不变,即(批量大小,隐藏单元数)

4. 预测

让我们首先定义预测函数来生成prefix之后的新字符, 其中的prefix是一个用户提供的包含多个字符的字符串。 在循环遍历prefix中的开始字符时, 我们不断地将隐状态传递到下一个时间步,但是不生成任何输出。 这被称为预热(warm-up)期, 因为在此期间模型会自我更新(例如,更新隐状态), 但不会进行预测。 预热期结束后,隐状态的值通常比刚开始的初始值更适合预测, 从而预测字符并输出它们。

def predict_ch8(prefix, num_preds, net, vocab, device):  #@save
    """ 在prefix后面生成新字符 """
    state = net.begin_state(batch_size=1, device=device)
    outputs = [vocab[prefix[0]]]
    get_input = lambda: torch.tensor([outputs[-1]], device=device).reshape((1, 1))
    for y in prefix[1:]:  ''' 预热期 '''
        _, state = net(get_input(), state)
        outputs.append(vocab[y])
    for _ in range(num_preds):  ''' 预测num_preds步 '''
        y, state = net(get_input(), state)
        outputs.append(int(y.argmax(dim=1).reshape(1)))
    return ''.join([vocab.idx_to_token[i] for i in outputs])

现在我们可以测试predict_ch8函数。 我们将前缀指定为time traveller, 并基于这个前缀生成10个后续字符。 鉴于我们还没有训练网络,它会生成荒谬的预测结果。

predict_ch8('time traveller ', 10, net, vocab, d2l.try_gpu())

 5. 梯度裁剪

动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现_第2张图片

def grad_clipping(net, theta):  
    """裁剪梯度"""
    if isinstance(net, nn.Module):
        params = [p for p in net.parameters() if p.requires_grad]
    else:
        params = net.params
    norm = torch.sqrt(sum(torch.sum((p.grad ** 2)) for p in params))
    if norm > theta:
        for param in params:
            param.grad[:] *= theta / norm

6. 训练

动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现_第3张图片

def train_epoch_ch8(net, train_iter, loss, updater, device, use_random_iter):
    """ 训练网络一个迭代周期 """
    state, timer = None, d2l.Timer()
    metric = d2l.Accumulator(2)  # 训练损失之和,词元数量
    for X, Y in train_iter:
        if state is None or use_random_iter:
            """ 在第一次迭代或使用随机抽样时初始化state """
            state = net.begin_state(batch_size=X.shape[0], device=device)
        else:
            if isinstance(net, nn.Module) and not isinstance(state, tuple):
                """ state对于nn.GRU是个张量 """
                state.detach_()
            else:
                """ state对于nn.LSTM或对于我们从零开始实现的模型是个张量 """
                for s in state:
                    s.detach_()
        y = Y.T.reshape(-1)
        X, y = X.to(device), y.to(device)
        y_hat, state = net(X, state)
        l = loss(y_hat, y.long()).mean()
        if isinstance(updater, torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            grad_clipping(net, 1)
            updater.step()
        else:
            l.backward()
            grad_clipping(net, 1)
            """ 因为已经调用了mean函数 """
            updater(batch_size=1)
        metric.add(l * y.numel(), y.numel())
    return math.exp(metric[0] / metric[1]), metric[1] / timer.stop()

循环神经网络模型的训练函数既支持从零开始实现, 也可以使用高级API来实现。

def train_ch8(net, train_iter, vocab, lr, num_epochs, device,
              use_random_iter=False):
    """ 训练模型 """
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', ylabel='perplexity',
                            legend=['train'], xlim=[10, num_epochs])
    """ 初始化 """
    if isinstance(net, nn.Module):
        updater = torch.optim.SGD(net.parameters(), lr)
    else:
        updater = lambda batch_size: d2l.sgd(net.params, lr, batch_size)
    predict = lambda prefix: predict_ch8(prefix, 50, net, vocab, device)
    """ 训练和预测 """
    for epoch in range(num_epochs):
        ppl, speed = train_epoch_ch8(
            net, train_iter, loss, updater, device, use_random_iter)
        if (epoch + 1) % 10 == 0:
            print(predict('time traveller'))
            animator.add(epoch + 1, [ppl])
    print(f'困惑度 {ppl:.1f}, {speed:.1f} 词元/秒 {str(device)}')
    print(predict('time traveller'))
    print(predict('traveller'))

现在,我们训练循环神经网络模型。 因为我们在数据集中只使用了10000个词元, 所以模型需要更多的迭代周期来更好地收敛。

num_epochs, lr = 500, 1
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu())

动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现_第4张图片

 最后,让我们检查一下使用随机抽样方法的结果。

net = RNNModelScratch(len(vocab), num_hiddens, d2l.try_gpu(), get_params,
                      init_rnn_state, rnn)
train_ch8(net, train_iter, vocab, lr, num_epochs, d2l.try_gpu(),
          use_random_iter=True)

动手学习深度学习(总结梳理)——23. 循环神经网络从0开始实现_第5张图片

 从零开始实现上述循环神经网络模型, 虽然有指导意义,但是并不方便。 在下一节中,我们将学习如何改进循环神经网络模型。 例如,如何使其实现地更容易,且运行速度更快。

你可能感兴趣的:(深度学习,学习,rnn,1024程序员节)