- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 【教程4>第9章>第8节】通过FPGA实现RGB图像转换为CMYK图像——verilog实现与MATLAB辅助验证
fpga和matlab
#fpga开发CMYKRGB教程4verilog
本课程学习成果预览(FPGA测试结果通过MATLAB显示)目录1.软件版本2.通过FPGA实现RGB图像转CMYK3.RGB图像转CMYK的测试3.1步骤一:生成测试样本3.2步骤二:通过testbench调用X2.bmp3.3步骤三:vivado仿真3.4步骤四:MATLAB辅助验证4.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- MFC数字图像处理24位图转8位图 等四种图像色彩转换方式
CurtainSystem
数字图像处理数字图像处理图像色彩转换24位图转8位图
一、实验主要思路和基本操作本实验主要探究8位图和24位图的颜色转换。8位图具有调色板,调色板中有对应的256种不同的颜色,每种颜色所含的RGB值都不一样。24位图没有调色板,RGB三个颜色分量分别都有0-255可选择,属于真彩色图像。其中,两种不同位数的图形都有彩色图像和灰度图像两种,灰度图像中每个像素的颜色分量,R、G、值都一样。所以本实验核心分为两点:了解颜色的RGB组合和学会调色板的使用调色
- 通俗易懂循环神经网络(RNN)指南
本文用直观类比、图表和代码,带你轻松理解RNN及其变体(LSTM、GRU、双向RNN)的原理和应用。什么是循环神经网络循环神经网络(RecurrentNeuralNetwork,RNN)是一类专门用于处理序列数据的神经网络。与前馈神经网络不同,RNN具有“记忆”能力,能够利用过去的信息来帮助当前的决策。这使得RNN特别适合处理像语言、语音、时间序列这样具有时序特性的数据。类比:你在阅读一句话时,会
- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- 深入解析Hadoop RPC:技术细节与推广应用
码字的字节
hadoop布道师HadoopRPC
HadoopRPC框架概述在分布式系统的核心架构中,远程过程调用(RPC)机制如同神经网络般连接着各个计算节点。Hadoop作为大数据处理的基石,其自主研发的RPC框架不仅支撑着内部组件的协同运作,更以独特的工程哲学诠释了分布式通信的本质。透明性:隐形的通信桥梁HadoopRPC最显著的特征是其对通信细节的完美封装。当NameNode接收DataNode的心跳检测,或ResourceManager
- 【Python 语法】Python 神经网络项目常用语法
一杯水果茶!
人生苦短我用Pythonpython
基础1.导入模块和包2.修改系统路径(sys.path.append)3.命令行参数解析(argparse模块)4.assert确保正确性5.main()脚本入口点6.辅助函数生成器函数`cycle(dl)`一、常用函数1.`.cuda()`/`.cpu()`和`torch.device`2.`torch.zeros`、`torch.randn`、`torch.arrange`、`torch.po
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 2023-08-03
yM_aad9
神经是一种社会资源!只要能和别的神经互动就行了!社会性的驯化离不开神经网络人与人之间的合作只能依赖感性理性心理生理事理物理跟蠢人谈情说爱免不了虚情假意它们最爱空头支票如果兑现不了那一定是别人欺骗了它!而不是自欺欺人的本能自欺欺人最容易受人欺骗最要命的是还持有了资料官有什么可怕?可怕的是贼呀!官可能互相约束贼只能互相伤害如果没有互相?那只有相护了!傻子坏人坏事见得少不知道什么叫坏处孬子好人好事见得少
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- C#实现24种数据校验算法的综合指南及工具包.zip
语嫣凝冰
本文还有配套的精品资源,点击获取简介:在数据通信和网络编程中,数据的完整性和准确性是至关重要的。C#作为一种流行的开发语言,提供了强大的工具来实现各类数据校验算法。本压缩包包含了一个名为“WindowsFormsApp”的C#应用程序,用于展示和实验24种数据校验方法,涵盖从简单到复杂的各种算法。这包括CRC校验、MD5、SHA系列、Adler32、Checksum、ParityBit、LRC、H
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 数字图像处理与Python语言实现-Box模糊CUDA实现
视觉与物联智能
数字图像处理与Python实现python深度学习计算机视觉图像处理CUDA
Box模糊CUDA实现文章目录Box模糊CUDA实现1、Box模糊的基本原理2、算法优化:滑动窗口技术3、参数对模糊效果的影响4、Box模糊的优缺点5、与高斯模糊的对比6、实际应用场景7、算法实现7.1PyCUDA实现7.2CuPy实现7.3C++与CUDA实现8、总结在图像处理领域,**Box模糊(方框模糊或均值模糊)**是一种基础且高效的模糊算法,其核心思想是通过对像素邻域内的颜色值取平均值来
- 人工神经网络的拓扑结构,神经网络的神经元结构
快乐的小蓝猫
神经网络深度学习人工智能rnn
bp神经网络BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经
- Deepoc大模型重构核工业智能基座:混合增强架构与安全增强决策技术
Deepoch
人工智能创业创新科技自动化学习
面向复杂系统的高可靠AI赋能体系构建Deepoc大模型通过多维度技术突破,显著提升核工业知识处理与决策可靠性。经核能行业验证,其生成内容可验证性提升68%,关键参数失真率99.999%)。动态可信度评估系统:基于贝叶斯神经网络实时量化模型不确定性,为关键决策提供置信度评分(如堆芯功率控制置信区间±0.05%)。二、核心突破:物理增强型智能算法创新机理与数据双驱动建模神经微分方程求解器:将中子输运方
- 图像处理中ct图的通道是多少_医疗图像处理:从形成到解读
weixin_39761822
图像处理中ct图的通道是多少
来源:ADI作者:AntonPatyuchenko上个世纪在医疗成像领域实现的技术进步为非侵入诊断创造了前所未有的机会,并确立医疗成像作为医疗健康系统的组成部分。代表这些进步的主要创新领域之一是医疗图像处理的跨学科领域。这一快速发展的领域涉及从原始数据采集到数字图像传输的广泛流程,而这些流程是现代医疗成像系统中完整数据流的基础。如今,这些系统在空间和强度维度方面提供越来越高的分辨率,以及更快的采集
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 万字长文,解读大模型技术原理(非常详细)零基础入门到精通,收藏这一篇就够了
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的发展历程出发,对大模型领域的各个技术细节进行详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。一、大模型的定义大语言模型作为一个被验证可行的方向,其“大”体现在训练数据集广,模型参数和层数大,计算量大,其价值体现在通用性上,并且有更好的泛化能力。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设
- TensorFlow为AI人工智能航空航天领域带来变革
AI原生应用开发
人工智能tensorflowpythonai
TensorFlow为AI人工智能航空航天领域带来变革关键词:TensorFlow、人工智能、航空航天、机器学习、深度学习、神经网络、自主系统摘要:本文探讨了TensorFlow这一强大的机器学习框架如何推动航空航天领域的创新。我们将从基础概念入手,逐步深入分析TensorFlow在航天器导航、卫星图像处理、飞行器自主决策等关键应用场景中的实现原理。通过实际代码示例和架构图解,展示TensorFl
- 从零开始构建AI原生应用的认知架构
AI原生应用开发
AI-native架构ai
从零开始构建AI原生应用的认知架构关键词:AI原生应用、认知架构、机器学习、知识图谱、神经网络、智能决策、系统设计摘要:本文深入探讨如何从零开始构建AI原生应用的认知架构。我们将从基本概念出发,逐步解析认知架构的核心组件,包括知识表示、推理机制和学习能力等。通过生动的比喻和实际代码示例,帮助读者理解如何设计一个能够模拟人类认知过程的AI系统。文章还将介绍当前最先进的认知架构模型,并展望未来发展趋势
- MATLAB中绘制系统零极点图(Pole-Zero Map)的几种方法
爱代码的小黄人
matlab开发语言
以下是MATLAB中绘制系统零极点图(Pole-ZeroMap)的常见方法及各自适用场景总结,适用于你当前在分析符号表达式/系统传函后的使用需求:✅方法一:pzmap(tf(num,den))(最常用,推荐)用法:num_coeffs=sym2poly(num);den_coeffs=sym2poly(den);sys=tf(num_coeffs,den_coeffs);pzmap(sys);✅优
- 将地面距离(米)转换为经纬度变化量(度),基于WGS84椭球模型。MATLAB
SageFlower
遥感
将地面距离(米)转换为经纬度变化量(度)1函数解释2主程序以下是针对该MATLAB代码的逐行解析和功能说明:1函数解释函数定义与用途function[lat_deg,lon_deg]=metersToDegrees(lat,meters)•功能:将地面距离(米)转换为经纬度变化量(度),基于WGS84椭球模型。•输入:•lat:纬度(-90°到90°)•meters:地面距离(默认16米)•输出:
- MATLAB在工业缺陷检测中的应用
本文还有配套的精品资源,点击获取简介:缺陷检测、伤痕检测、瑕疵检测和划痕检测是工业自动化和质量控制中至关重要的环节,MATLAB作为一种高级编程环境,在图像处理和计算机视觉任务中扮演了重要角色。本文详细介绍了如何使用MATLAB实现这些检测过程,包括图像采集、预处理、特征提取和决策制定等步骤。通过介绍内置图像处理工具箱中的应用,色彩转换技术、边缘检测算法以及形态学操作等方法,我们阐述了如何识别和处
- MATLAB电力系统暂态稳定分析
rit8432499
matlab开发语言
MATLAB电力系统暂态稳定分析程序MATLAB电力系统暂态稳定分析程序,包含潮流计算和机电暂态仿真功能。实现电力系统暂态稳定分析流程,包括牛顿-拉夫逊法潮流计算、同步发电机模型、励磁系统模型和数值积分求解。%===================================================%电力系统暂态稳定分析程序%功能:%1.牛顿-拉夫逊法潮流计算%2.机电暂态仿真%3.同
- 【缺陷检测】基于计算机视觉实现电路板智能检测系统附Matlab代码
matlab科研助手
计算机视觉matlab人工智能
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍随着信息技术的飞速发展和电子产品的日益普及,印刷电路板(PCB)作为电子产品的核心组件,其质量直接关系到整个系统的性能和可靠性。传统的电路板检测主要依赖人工目检,存在效率低下
- Matlab自学笔记六十四:求解自变量带有约束条件的方程
1.说明有一些方程由于实际问题的需要,需要设置一些限制约束条件,例如x>0等,若使用Matlab编程求解,首先尝试使用符号运算求解(符号运算可参考文章54:Matlab自学笔记五十四:符号数学工具箱和符号运算、符号求解、绘图),简单的约束条件可以在声明sym变量的时候直接写出,复杂的约束条件可能需要使用assume设置假设条件(符号变量假设条件的用法请参考文章56:Matlab快速上手五十六:详解
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found