- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- DG-Manba模型详解及代码复现
清风AI
深度学习计算机视觉pytorch人工智能神经网络
模型特点在DG-Manba模型的基础架构中,其独特的模型特点使其在处理序列数据时展现出卓越的性能。本节将详细介绍DG-Manba模型在架构、功能和性能方面的创新之处。选择性机制DG-Manba模型的核心创新在于其选择性机制。这种机制允许模型根据输入数据的特征动态调整其行为,类似于递归神经网络(RNN)中的门控机制,但在状态空间模型(SSM)的框架下提供了更广泛的应用可能性。通过这种方式,DG-Ma
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 即插即用模块--KANLinear
苏格拉没有鞋底
模型训练深度学习人工智能python
KAN网络KAN网络即Kolmogorov-Arnold网络,是一类基于Kolmogorov-Arnold表示定理的神经网络架构,具有强大的非线性表达能力。在相同迭代次数下超越传统MLP,不仅训练速度更快,收敛性更好,而且在拟合复杂函数时的精度也明显提高。这是一个即插即用模块–KANLinear,使用时import这个代码文件,然后模型中的nn.Linear换成这个KANLinear即可impor
- cursor全栈网页开发最合适的技术架构和开发语言
getapi
架构开发语言
在使用Cursor(一个基于AI的代码编辑器)进行前后端全栈网页开发时,选择合适的技术架构和开发语言非常重要。以下是一个推荐的技术架构和语言组合,能够帮助你高效开发并充分利用Cursor的功能。1.技术架构推荐对于全栈开发,建议采用MERN/MEAN技术栈或现代化的微前端架构,具体如下:(1)MERN技术栈MERN是MongoDB、Express.js、React和Node.js的缩写,是目前非常
- PHP语言的区块链扩展性
叶雅茗
包罗万象golang开发语言后端
PHP语言的区块链扩展性引言区块链技术因其去中心化、透明性和不可篡改的特性而备受关注,已被广泛应用于金融、物流、供应链管理、数字身份等多个领域。而在构建区块链应用时,开发语言的选择至关重要。PHP作为一种流行的服务器端脚本语言,凭借其简单易学的特性和丰富的生态系统,逐渐开始在区块链应用开发中崭露头角。本文将探讨PHP语言在区块链应用中的扩展性,包括其优点、局限性,以及如何利用现有的框架和库来构建高
- Matlab 高效编程:用矩阵运算替代循环
算法工程师y
matlab矩阵java
引言在Matlab中,循环(如for或while)虽然易于理解,但可能导致性能瓶颈,尤其是处理大规模数据时。矩阵运算的向量化是Matlab高效编程的核心,利用内置函数和矩阵操作避免逐元素处理,可显著提升代码速度(有时甚至提速百倍)。本文将通过实例演示如何将循环逻辑转化为矩阵运算。1.为什么矩阵运算比循环快?Matlab底层基于C/C++和Fortran高度优化的矩阵库(如BLAS、LAPACK),
- Python--读取mat文件
一头大学牲
程序--编程记录python开发语言深度学习机器学习
最近在进行学习深度学习过程中,遇到了以MATLAB的.mat格式存储的数据,需要用python读取出来处理,于是就找到了以下比较方便的三种python读取mat文件的方法:使用hdf5库来读取mat文件1.使用scipy.io来读取1.5知识小插曲2.使用hdf5来读取3.使用mat73来读取1.使用scipy.io来读取-如果你的matlab的版本比较旧,保存的.mat格式为‘-v7.3’以前的
- 利用matlab实现贝叶斯优化算法(BO)优化支持向量机回归(SVR)的超参数
是内啡肽耶
算法matlab支持向量机机器学习回归
【导读】在机器学习建模中,支持向量机(SVM)回归模型的效果高度依赖超参数选择。但手动调参就像"大海捞针",而网格搜索又面临"计算爆炸"的难题。今天给大家介绍一个智能调参黑科技——贝叶斯优化算法。通过Matlab实现,只需几分钟就能让模型性能自动升级!一、为什么要用贝叶斯优化调参?传统调参三大痛点:C参数(正则化强度):过小导致过拟合,过大削弱模型能力ε参数(不敏感区域):决定对预测误差的容忍度核
- MATLAB代码开发实战:从入门到高效应用
vvvae1234
matlab开发语言
一、MATLAB生态系统的核心优势(扩展原有内容,增加行业数据)MATLAB在全球工程领域的市场占有率已达67%(2024年IEEE统计),其核心优势体现在:矩阵运算速度比传统编程快3-5倍包含22个专业工具箱的完整工具链与硬件设备(如Arduino)的即插即用接口自动生成C/C++代码的部署能力案例佐证:2023年NASA火星探测器使用MATLAB/Simulink完成97%的导航算法验证二、代
- 利用 OpenCV 库进行实时目标物体检测
欣然~
opencv人工智能计算机视觉
一、代码概述此代码利用OpenCV库实现了基于特征匹配的实时物体检测系统。通过摄像头捕获实时视频帧,将其与预先加载的参考图像进行特征匹配,从而识别出视频帧中是否存在与参考图像匹配的物体。二、环境依赖OpenCV:用于图像处理、特征提取和匹配等操作。NumPy:用于数值计算,OpenCV依赖于NumPy进行数组操作。可以使用以下命令安装所需库:bashpipinstallopencv-pythonn
- 最新微信小程序面试题集结
江湖二哥
微信小程序前端面试小程序
1、微信小程序与H5的区别?第一条是运行环境的不同传统的HTML5的运行环境是浏览器,包括webview,而微信小程序的运行环境并非完整的浏览器,是微信开发团队基于浏览器内核完全重构的一个内置解析器,针对小程序专门做了优化,配合自己定义的开发语言标准,提升了小程序的性能。第二条是开发成本的不同只在微信中运行,所以不用再去顾虑浏览器兼容性,不用担心生产环境中出现不可预料的奇妙BuG第三条是获取系统级
- matlab 模糊pid实现温度控制
studyer_爱啃鸡爪的小米
Matlab系列案例matlab
1、内容简介matlab162-模糊pid实现温度控制可以交流、咨询、答疑2、内容说明略基于PID电加热炉温度控制系统设计摘要电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法
- 【JCR一区级】被囊群算法TSA-Transformer-GRU负荷数据回归预测【含Matlab源码 6309期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 【杨乐昆何凯明AI论文】没有归一化的Transformer模型
东临碣石82
人工智能transformer深度学习
摘要:归一化层在现代神经网络中无处不在,长期以来一直被视为不可或缺的组成部分。本研究表明,通过使用一种极其简单的技术,没有归一化的Transformer模型可以达到相同或更好的性能。我们引入了动态Tanh(DyT),这是一种逐元素操作,表示为DyT(x)=tanh(alphax),作为Transformer中归一化层的即插即用替代品。DyT的灵感来源于这样一个观察:Transformer中的层归一
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- MacOS在matlab中使用dir时,总是出现“._”文件的解决方法
我是水怪的哥
经验分享Matlabmacos经验分享
问题描述:Mac读取文件时出现"._"文件的原因是macOS自动创建隐藏的元数据文件(AppleDouble格式),特别是在文件被复制到非macOS文件系统(如外接硬盘、U盘、网络共享盘)时。(1)为什么会出现"._"文件?(a)macOS会将额外的文件信息(如Finder标签、资源分叉、权限等)存储在"._"文件中。(b)这些文件通常在macOS下是隐藏的,但在MATLAB读取文件时,尤其是在L
- 数字电路设计的基本流程
minstbe
数字电路设计fpga开发
数字电路设计的整个流程可以看作是围绕RTL设计这一关键环节展开的完整芯片设计过程。以下是从RTL出发,逐步扩展到其他环节的详细描述:1.系统级设计(System-LevelDesign)目标:确定芯片的总体功能和性能指标。定义芯片的架构,包括模块划分、数据路径、控制路径等。关键内容:需求分析:确定芯片需要完成的任务,例如计算能力、功耗、面积等。系统建模:使用工具(如MATLAB、SystemC)搭
- 《Python深度学习》第四讲:计算机视觉中的深度学习
earthzhang2021
2025讲书课专栏python深度学习计算机视觉1024程序员节numpy算法人工智能
计算机视觉是深度学习中最酷的应用之一,它让计算机能够像人类一样“看”和理解图像。想象一下,计算机可以自动识别照片中的物体、人脸,甚至可以读懂交通标志。这一切听起来是不是很神奇?其实,这一切都离不开深度学习中的卷积神经网络(CNN)。今天,我们就来深入了解一下CNN是如何工作的。5.1卷积神经网络简介先来看下卷积神经网络(CNN)是什么。CNN是一种专门用于处理图像数据的神经网络。它的灵感来源于人类
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- Matlab多种算法解决未来杯B的多分类问题
Subject.625Ruben
算法分类机器学习数学建模未来杯matlab人工智能
1.读取数据首先,我们从Excel文件中读取训练集和测试集:2.训练集划分我们将80%的数据用于训练,20%用于验证。3.训练多个模型我们选取8种常见分类模型,并存储预测结果。fori=1:length(modelNames)switchmodelNames{i}case'MultinomialLogisticRegression'B=mnrfit(X_train,Y_train,'model',
- 基于群智能算法的三维无线传感网络覆盖优化数学模型-可以使用群智能算法直接调用进行优化,完整MATLAB代码
算法小狂人
算法应用matlabphp开发语言
1.1三维覆盖模型由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以RcovR_{\text{cov}}Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒NNN个传感器节点,形成节点集S={s1,s2,s3,⋯ ,sN}S=\{s_1,s_2,s_3,\cdots,s_N\}S={s1,s2,s3,⋯,sN},第iii个节点的坐
- 【matlab代码】基于RSSI的wifi定位例程(三维空间,自适应基站的数量)
MATLAB卡尔曼
定位与导航1024程序员节matlab开发语言定位导航蓝牙
文章目录程序概述程序运行运行方法运行结果代码各模块的功能源代码总结程序概述该程序基于RSSI(接收信号强度指示)原理实现Wi-Fi定位,适用于在三维空间中定位未知点。程序通过多个锚点(基站)测量信号强度,并计算目标点的位置。程序使用以下公式进行位置计算:路径损耗模型公式:RSSI=A−10nlog10(d)RSSI=A-10n\log_{10}(d)RSSI=A−10nlog10(d)其中:RS
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- Qt中实现窗体透明效果的方法及其与Matlab的比较
NoerrorCode
qtmatlab开发语言
Qt中实现窗体透明效果的方法及其与Matlab的比较在本文中,我们将探讨如何在Qt框架下实现窗体透明效果,并与Matlab进行比较。我们将详细介绍Qt中实现窗体透明的几种方式,并提供相应的源代码示例。一、Qt中实现窗体透明效果的方法使用setWindowOpacity函数setWindowOpacity函数是Qt中最简单的一种实现窗体透明效果的方法。它接受一个0到1之间的浮点数作为参数,表示窗体的
- 从零开始探索C++游戏开发:性能、控制与无限可能
南玖yy
C++游戏开发c
一、为何选择C++开发游戏?在虚幻引擎5渲染的次世代画面背后,在《巫师3》的庞大开放世界中,在《毁灭战士》的丝滑60帧战斗里,C++始终扮演着核心技术角色。这门诞生于1983年的语言,至今仍占据着游戏引擎开发语言使用率榜首(根据2023年GameDev调查数据)。其核心竞争力体现在:硬件级控制:手动内存管理允许精确控制资源分配,这对需要管理数百万多边形和4K纹理的3A游戏至关重要零成本抽象:模板元
- rapidocr-onnxruntime库及在open-webui上传PDF 图像处理 (使用 OCR)应用
原野AI
大模型部署pdfocr深度学习open-webui
背景rapidocr-onnxruntime是一个跨平台的OCR库,基于ONNXRuntime推理框架。目前已知运行速度最快、支持最广,完全开源免费并支持离线快速部署的多平台多语言OCR。缘起:百度paddle工程化不是太好,为了方便大家在各种端上进行ocr推理,我们将它转换为onnx格式,使用Python/C++/Java/Swift/C#将它移植到各个平台。名称来源:轻快好省并智能。基于深度学
- NPU的工作原理:神经网络计算的流水线
绿算技术
NPU架构介绍神经网络人工智能深度学习
NPU的工作原理可以概括为以下几个步骤:1.模型加载·将训练好的神经网络模型加载到NPU的内存中。2.数据输入·输入数据(如图像、语音)通过接口传输到NPU。3.计算执行·NPU根据模型结构,依次执行卷积、池化、全连接等计算任务。·矩阵乘法单元和卷积加速器并行工作,高效完成计算。4.结果输出·计算完成后,输出结果(如分类标签、检测框)返回给主机或其他处理器。5.任务调度·在多任务场景下,NPU的任
- 在MATLAB中进行并行计算和GPU加速?
琛哥的程序
网络服务器人工智能
在MATLAB中进行并行计算和GPU加速是提升计算性能和处理大规模数据集的重要手段。下面将详细介绍如何在MATLAB中实现这些技术。一、并行计算MATLAB提供了并行计算的功能,可以充分利用多核处理器和分布式计算资源,显著提高代码执行效率。在MATLAB中进行并行计算的主要工具有ParallelComputingToolbox和parfor循环。ParallelComputingToolboxPa
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found