本篇主要是完成谷粒商城高级篇开发时,我们需要了解并学习一部分补充的知识,才能更好的完成商城业务。
以后我们将商城任务和额外知识分开来编写,方便商城业务的连贯性。
下面是本篇文章各个章节对应的相应商城业务。
章节内容 | 对应商城业务内容 |
---|---|
1 ES | 2.1 商品上架等业务 |
3 性能与压力测试 | 2.3 检索业务 |
4 缓存与分布式锁 | 2.3 检索业务等业务 |
5 异步&线程池 | 2.4 商品详情等业务 |
6 分布式事务 | 2.7 订单服务、秒杀服务等 |
7 RabbitMQ | 2.7 订单服务、秒杀服务等 |
8 SpringCloud Alibaba-Sentinel | 全服务 |
https://www.elastic.co/cn/what-is/elasticsearch
全文搜索属于最常见的需求,开源的Elasticsearch 是目前全文搜索引擎的首选。
它可以快速地储存、搜索和分析海量数据。维基百科、Stack Overflow、Github 都采用它Elastic 的底层是开源库Lucene。但是,你没法直接用Lucene,必须自己写代码去调用它的接口。Elastic 是Lucene 的封装,提供了REST API 的操作接口,开箱即用。
REST API:天然的跨平台。
官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
官方中文:https://www.elastic.co/guide/cn/elasticsearch/guide/current/foreword_id.html
社区中文:
https://es.xiaoleilu.com/index.html
http://doc.codingdict.com/elasticsearch/0/
PS:mysql用作持久化存储,ES用作检索。
1、Index(索引)
动词,相当于MySQL 中的insert;
名词,相当于MySQL 中的Database
2、Type(类型)
在Index(索引)中,可以定义一个或多个类型。
类似于MySQL 中的Table;每一种类型的数据放在一起;
3、Document(文档)
保存在某个索引(Index)下,某种类型(Type)的一个数据(Document),文档是JSON 格
式的,Document 就像是MySQL 中的某个Table 里面的内容;每一行对应的列叫属性。
4、倒排索引机制
为什么ES搜索快?
倒排索引
- 保存的记录
- 红海行动
- 探索红海行动
- 红海特别行动
- 红海记录片
- 特工红海特别探索
全文搜索引擎目前主流的索引技术就是倒排索引的方式。
传统的保存数据的方式都是: 记录→单词;
而倒排索引的保存数据的方式是:单词→记录;
例如: 搜索“红海行动”:
数据库中保存的数据如图:
那么搜索引擎是如何能将两者匹配上的呢?
基于分词技术构建倒排索引:
首先每个记录保存数据时,都不会直接存入数据库。系统先会对数据进行分词,然后以倒排索引结构保存:将内容分词就记录到索引中。
然后等到用户搜索的时候,会把搜索的关键词也进行分词,会把“红海行动”分词分成:红海和行动两个词。
这样的话,先用红海进行匹配,得到id=1和id=2的记录编号,再用行动匹配可以迅速定位id为1,3的记录。
那么全文索引通常,还会根据匹配程度进行打分,显然1号记录能匹配的次数更多。所以显示的时候以评分进行排序的话,1号记录会排到最前面。而2、3号记录也可以匹配到。
一些小知识:
关系型数据库中两个数据表是独立的,即使他们里面有相同名称的列也不影响使用,但ES中不是这样的。elasticsearch是基于Lucene开发的搜索引擎,而ES中不同type下名称相同的filed最终在Lucene中的处理方式是一样的。
两个不同type下的两个user_name,在ES同一个索引下其实被认为是同一个filed,你必须在两个不同的type中定义相同的filed映射。否则,不同type中的相同字段名称就会在处理中出现冲突的情况,导致Lucene处理效率下降。
去掉type就是为了提高ES处理数据的效率。
Elasticsearch 7.x
URL中的type参数为可选。比如,索引一个文档不再要求提供文档类型。
Elasticsearch 8.x
不再支持URL中的type参数。
解决:将索引从多类型迁移到单类型,每种类型文档一个独立索引
1、下载镜像文件
docker pull elasticsearch:7.4.2 > 存储和检索数据
docker pull kibana:7.4.2 >可视化检索数据
注意版本要统一
2、创建实例
1、ElasticSearch
配置
mkdir -p /mydata/elasticsearch/config
mkdir -p /mydata/elasticsearch/data
echo "http.host: 0.0.0.0" >> /mydata/elasticsearch/config/elasticsearch.yml # es可以被远程任何机器访问
chmod -R 777 /mydata/elasticsearch/ # 递归更改权限,es需要访问
启动Elastic search
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2
# 9200是用户交互端口:发送 http请求,也就是说 RestAPI; 9300是集群心跳端口:分布式集群下节点之间的通信端口
# -e指定是单阶段运行
# -e指定占用的内存大小,生产时可以设置32G
以后在外面装好插件重启即可;
特别注意:
-e ES_JAVA_OPTS=“-Xms64m -Xmx256m” \ 测试环境下,设置ES 的初始内存和最大内存,否则导致过大启动不了ES
docker pull kibana:7.4.2
启动kibana:
docker run --name kibana -e ELASTICSEARCH_HOSTS=http://192.168.11.129:9200 -p 5601:5601 -d kibana:7.4.2
ps:如果想要更改成 root用户,只需执行 su root 或者 su 即可
前面我们已经启动了 es 和 kibana 接下来我们开始进行测试。
访问: http://192.168.56.10:9200
展示的是elastic search 的版本信息
访问: http://192.168.56.10:5601
kibana的界面,看到这个界面就表示启动成功。
为了每次重启 虚拟机后让 es 和 kibana都自动启动,设置如下:
docker update xxx --restart=always
http://192.168.56.10:9200/_cat/indices
127.0.0.1 15 93 1 0.00 0.04 0.05 dilm * 1f978d71d5e5
1f978d71d5e5代表结点
*代表是主节点
http://192.168.56.10:9200/_cat/health
1613741055 13:24:15 elasticsearch green 1 1 0 0 0 0 0 0 - 100.0%
注:green表示健康值正常
http://192.168.56.10:9200/_cat/master
6wqDE9jbS1GgN-bfd38G3A 127.0.0.1 127.0.0.1 1f978d71d5e5
主节点唯一编号
虚拟机地址
http://192.168.56.10:9200/_cat/indices
green open .kibana_task_manager_1 DhtDmKrsRDOUHPJm1EFVqQ 1 0 2 3 40.8kb 40.8kb
green open .apm-agent-configuration vxzRbo9sQ1SvMtGkx6aAHQ 1 0 0 0 230b 230b
green open .kibana_1 rdJ5pejQSKWjKxRtx-EIkQ 1 0 5 1 18.2kb 18.2kb
保存一个数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识((哪张数据库哪张表下))
PUT customer/external/1;在customer 索引下的external 类型下保存1 号数据为
{
"name": "John Doe"
}
http://192.168.56.10:9200/customer/external/1
PUT 和POST 都可以进行保存。
POST 新增。如果不指定id,会自动生成id。指定id 就会修改这个数据,并新增版本号
PUT 可以新增可以修改。PUT 必须指定id(否则报405错误);由于PUT 需要指定id,我们一般都用来做修改
操作,不指定id 会报错。唯一区分是post不指定id时永远为创建
带__表示元数据:例如 _index/_type…
put:新增保存二合一
put 带id 保存:
created表示新建(第一次建立)updated表示更新:发送多次是一个更新操作
post:新增
post不带id:
post是新增操作,每一次都是一个新增操作,id自动生成
post带id:第一次新建(没有数据),第二次就变成了更新操作(有数据)
下面将会具体说明:
put方式:
http://192.168.56.10:9200/customer/external/3
内容:
{
"name": "John Doe1"
}
结果:
{
"_index": "customer",
"_type": "external",
"_id": "3",
"_version": 1,
"result": "created",//第一次新增
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 5,
"_primary_term": 1
}
第二次发送同样请求,同样内容
结果:
{
"_index": "customer",
"_type": "external",
"_id": "3",
"_version": 2,
"result": "updated",//第二次更新操作
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 6,
"_primary_term": 1
}
post 方式:
url:http://192.168.56.10:9200/customer/external
内容:
{
"name": "John Doe"
}
结果:
{
"_index": "customer",
"_type": "external",
"_id": "MwY3moQBxHVjvbya1wx4",
"_version": 1,
"result": "created",//新增
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 3,
"_primary_term": 1
}
同样的请求和同样的内容
{
"_index": "customer",
"_type": "external",
"_id": "NAZEmoQBxHVjvbyaUAzW",
"_version": 1,
"result": "created",//新增
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 7,
"_primary_term": 1
}
不带 id 每一次都是新增
post 带 id保存
url:http://192.168.56.10:9200/customer/external/4
内容:
{
"name": "John Doe"
}
结果:
{
"_index": "customer",
"_type": "external",
"_id": "4",
"_version": 1,
"result": "created", //第一次是新增
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 10,
"_primary_term": 1
}
同url 、同 json 数据测试
结果:
{
"_index": "customer",
"_type": "external",
"_id": "4",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 11,
"_primary_term": 1
}
带 id :第一次新增,第二次就是更新操作了
GET customer/external/1
结果:
{
"_index": "customer", //在哪个索引
"_type": "external", //在哪个类型
"_id": "1", //记录id
"_version": 2, //版本号
"_seq_no": 1, //并发控制字段,每次更新就会+1,用来做乐观锁
"_primary_term": 1, //同上,主分片重新分配,如重启,就会变化
"found": true,
"_source": { //真正的内容
"name": "John Doe"
}
}
更新携带?if_seq_no=0&if_primary_term=1
:乐观锁修改:当序列号匹配的时候,才进行修改,否则不修改(出现409错误)。
POST customer/external/1/_update
{
"doc":{
"name": "John Doew"
}
}
或者 POST customer/external/1
{
"name": "John Doe2"
}
或者
PUT customer/external/1
{
"name": "John Doe"
}
不同
PUT 操作总会将数据重新保存并增加version 版本;
带_update 对比元数据如果一样就不进行任何操作。_
看场景:
对于大并发更新,不带 update ;
对于大并发查询偶尔更新,带 update ;对比更新,重新计算分配规则。
更新同时增加属性
POST customer/external/1/_update
{
"doc": { "name": "Jane Doe", "age": 20 }
}
PUT 和POST 不带_update 也可以
ps:
post 更新 带 _update
如果数据都一样,第二次发送请求就会显示noop(no operation) 没有任何操作,版本,序列号也不会变
只有这个才会检测数据,其他put和post都不会对比原来的数据
post更新 不带 _update
每次都是更新
DELETE customer/external/1
DELETE customer
注:elasticsearch并没有提供删除类型的操作,只提供了删除索引和文档的操作。
POST customer/external/_bulk
{"index":{"_id":"1"}}
{"name": "John Doe" }
{"index":{"_id":"2"}}
{"name": "Jane Doe" }
两行为一个整体
语法格式:
{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
ps: 注意在 postman中测试选择格式json和text均不可,要去kibana里Dev Tools
这里的批量操作,当发生某一条执行发生失败时,其他的数据仍然能够接着执行,也就是说彼此之间是独立的。
bulk api 以此按顺序执行所有的action(动作)。如果一个单个的动作因任何原因失败,它将继续处理它后面剩余的动作。当bulk api返回时,它将提供每个动作的状态(与发送的顺序相同),所以您可以检查是否一个指定的动作是否失败了。
结果:
#! Deprecation: [types removal] Specifying types in bulk requests is deprecated.
{
"took" : 318, 花费了多少ms
"errors" : false, 没有发生任何错误
"items" : [ 每个数据的结果
{
"index" : { 保存
"_index" : "customer", 索引
"_type" : "external", 类型
"_id" : "1", 文档
"_version" : 1, 版本
"result" : "created", 创建
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 0,
"_primary_term" : 1,
"status" : 201 新建完成
}
},
{
"index" : { 第二条记录
"_index" : "customer",
"_type" : "external",
"_id" : "2",
"_version" : 1,
"result" : "created",
"_shards" : {
"total" : 2,
"successful" : 1,
"failed" : 0
},
"_seq_no" : 1,
"_primary_term" : 1,
"status" : 201
}
}
]
}
复杂实例:
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }} delete:删除操作:哪一个索引下的哪一个类型下的id为几的数据
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}创建操作:哪一个索引下的哪一个类型下的id为几的数据
{ "title": "My first blog post" } 表示真正的内容(是上面创建操作的)
{ "index": { "_index": "website", "_type": "blog" }} 保存
{ "title": "My second blog post" } 真正的内容
{ "update": { "_index": "website", "_type": "blog", "_id": "123", "_retry_on_conflict" : 3} } 更新记录
{ "doc" : {"title" : "My updated blog post"} } 真正的内容
我准备了一份顾客银行账户信息的虚构的JSON 文档样本。每个文档都有下列的schema
(模式):
{
"account_number": 0,
"balance": 16623,
"firstname": "Bradshaw",
"lastname": "Mckenzie",
"age": 29,
"gender": "F",
"address": "244 Columbus Place",
"employer": "Euron",
"email": "[email protected]",
"city": "Hobucken",
"state": "CO"
}
https://github.com/elastic/elasticsearch/blob/master/docs/src/test/resources/accounts.json?raw=true 导入测试数据
这里老师给的地址失效了:下面是有效的地址
测试数据:https://gitee.com/xlh_blog/common_content/blob/master/es%E6%B5%8B%E8%AF%95%E6%95%B0%E6%8D%AE.json#
POST bank/account/_bulk
查看下上面的导入数据
http://192.168.56.10:9200/_cat/indices
刚导入了1000条
yellow open bank YRnUvuAURQmmNQSC83fcDQ 1 1 1000 0 414.3kb 414.3kb
1、检索信息
一切检索从**_search** 开始
ES支持两种基本方式检索;
1.通过REST request uri 发送 搜索参数 (uri +检索参数);
2.通过REST request body 来发送它们(uri+请求体)
GET bank/search :检索 bank 下所有信息,包括 type 和 docs
GET bank/_search?q=*&sort=account_number:asc :请求参数方式检索
q=* 查询所有
sort 排序字段
asc升序
响应结果解释:
took - Elasticsearch 执行搜索的时间(毫秒)
time_out - 告诉我们搜索是否超时
_shards - 告诉我们多少个分片被搜索了,以及统计了成功/失败的搜索分片
hits - 搜索结果
hits.total - 搜索结果
hits.hits - 实际的搜索结果数组(默认为前10 的文档)
sort - 结果的排序key(键)(没有则按score 排序)
score 和max_score –相关性得分和最高得分(全文检索用)_
检索了1000条数据,但是根据相关性算法–默认只返回10条。
_ uri+请求体进行检索
GET bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"account_number": "asc"
},
{
"balance": "desc"
}
]
}
第二种方式:携带请求体 是我们主要的使用方式。
HTTP 客户端工具(POSTMAN),get 请求不能携带请求体,我们变为post 也是一样的
我们POST 一个JSON 风格的查询请求体到_search API。
需要了解,一旦搜索的结果被返回,Elasticsearch 就完成了这次请求,并且不会维护任何
服务端的资源或者结果的cursor(游标)。
1)、基本语法格式
Elasticsearch 提供了一个可以执行查询的Json 风格的DSL(domain-specific language 领域特定语言)。这个被称为Query DSL。该查询语言非常全面,并且刚开始的时候感觉有点复杂,真正学好它的方法是从一些基础的示例开始的。
一个查询语句的典型结构
QUERY_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE,
...
}
如果是针对某个字段,那么它的结构如下:
{
QUERY_NAME:{
FIELD_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE,...
}
}
}
示例
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"_source":["balance"],
"sort": [
{
"account_number": {
"order": "desc"
}
}
]
}
GET bank/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"_source": [
"age",
"balance"
]
}
3)、match【匹配查询】
GET bank/_search
{
"query": {
"match": {
"account_number": "20"
}
}
}
match 返回account_number=20 的
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
}
}
最终查询出address 中包含mill lane单词的所有记录。
match 当搜索字符串类型的时候,会进行全文检索,并且每条记录有相关性得分。
GET bank/_search
{
"query": {
"match": {
"address": "mill lane"
}
}
}
## 全文检索按照评分进行排序,会对检索条件进行分词匹配。
最终查询出address 中包含mill 或者road 或者mill lane 的所有记录,并给出相关性得分。
ps:
查询条件:
如果是非字符串,表示精确检索如果是字符串类型,是模糊检索—倒排索引
最终都会有一个max_score:最大评分,以及 _score:评分
4)、match_phrase【短语匹配】
将需要匹配的值当成一个整体单词(不分词)进行检索
## 短语匹配
GET bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
查出address 中包含mill lane的所有记录,并给出相关性得分。
5)、multi_match【多字段匹配】
## 多字段匹配
GET bank/_search
{
"query": {
"multi_match": {
"query": "mill",
"fields": ["address","city"]
}
}
}
6)、bool【复合查询】
bool 用来做复合查询:
复合语句可以合并任何其它查询语句,包括复合语句,了解这一点是很重要的。这就意味
着,复合语句之间可以互相嵌套,可以表达非常复杂的逻辑。
## 复合查询
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
],
"must_not": [
{
"match": {
"age": "18"
}
}
],
"should": [
{
"match": {
"lastname": "Wallace"
}
}
],
}
}
}
address 包含mill,如果 lastname 里面有 wallace 最好不过,但是age必须不包含18。
7)、filter【结果过滤】
并不是所有的查询都需要产生分数,特别是那些仅用于“filtering”(过滤)的文档。为了不计算分数Elasticsearch 会自动检查场景并且优化查询的执行。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
],
"filter": {
"range": {
"balance": {
"gte": 10000,
"lte": 20000
}
}
}
}
}
}
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
],
"must_not": [
{
"match": {
"age": "18"
}
}
],
"should": [
{
"match": {
"lastname": "Wallace"
}
}
],
"filter": {
"range": {
"age": {
"gte": 18,
"lte": 30
}
}
}
}
}
}
注意:filter 不会计算相关性得分。
8)、term
和match 一样。匹配某个属性的值。全文检索字段用match,其他非text 字段匹配用term。
ps:非文本字段使用 term 匹配
文本字段使用 match 匹配
ps:字段想要精确匹配:
1.字段.keyword:后面的字符串必须和字段的真实的值一模一样,否则就会查出0条记录2.如果使用match_prashe:因为是短语匹配,所以不需要完全一样
## 推荐非字符串字段使用
GET bank/_search
{
"query": {
"term": {
"balance": {
"value": "32838"
}
}
}
}
## 推荐字符串字段使用
## 字符串字段精确匹配的两种方式
GET bank/_search
{
"query": {
"match": {
"address.keyword": "789 Madison"
}
}
}
GET bank/_search
{
"query": {
"match_phrase": {
"address": "789 Madison"
}
}
}
9)、aggregations(执行聚合)
聚合提供了从数据中分组和提取数据的能力。最简单的聚合方法大致等于SQL GROUP BY 和SQL 聚合函数。在Elasticsearch 中,您有执行搜索返回hits(命中结果),并且同时返回聚合结果,把一个响应中的所有hits(命中结果)分隔开的能力。这是非常强大且有效的,您可以执行查询和多个聚合,并且在一次使用中得到各自的(任何一个的)返回结果,使用一次简洁和简化的API 来避免网络往返。
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"aggs": {
"group_by_state": {
"terms": {
"field": "age",
"size": 100
}
},
"aggAvg":{
"avg": {
"field": "age"
}
}
},
"size": 0
}
结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggAvg" : {
"value" : 34.0
},
"group_by_state" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 38,
"doc_count" : 2
},
{
"key" : 28,
"doc_count" : 1
},
{
"key" : 32,
"doc_count" : 1
}
]
}
}
}
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"aggAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"balAvg": {
"avg": {
"field": "balance"
}
}
}
}
}
}
结果:
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"aggAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"genderAvg": {
"terms": {
"field": "gender.keyword"
},
"aggs": {
"balanceAvg": {
"avg": {
"field": "balance"
}
}
}
},
"ageBalanceAvg":{
"avg": {
"field": "balance"
}
}
}
}
}
}
结果:
映射定义文档如何被存储检索的。
1)、字段类型
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/mapping-types.html
核心类型–复合类型–地理类型–特定类型–核心数据类型
(1)字符串
text ⽤于全⽂索引,搜索时会自动使用分词器进⾏分词再匹配
keyword 不分词,搜索时需要匹配完整的值
(2)数值型
整型: byte,short,integer,long
浮点型: float, half_float, scaled_float,double
(3)日期类型:date
(4)范围型
integer_range, long_range, float_range,double_range,date_range
gt是大于,lt是小于,e是equals等于。
age_limit的区间包含了此值的文档都算是匹配。
(5)布尔
boolean
(6)⼆进制
binary 会把值当做经过 base64 编码的字符串,默认不存储,且不可搜索复杂数据类型
(1)对象
object一个对象中可以嵌套对象。
(2)数组
Array
嵌套类型
nested 用于json对象数组
2)、映射
Mapping(映射)
Mapping 是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。比如,使用mapping 来定义:
查看mapping 信息:
GET bank/_mapping
修改mapping 信息:
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
3)、新版本改变
Es7 及以上移除了type 的概念。
Elasticsearch 7.x
Specifying types in requests is deprecated. For instance, indexing a document no longer requires a document type. The new index APIs are PUT {index}/_doc/{id} in case of explicit ids and POST {index}/_doc for auto-generated ids. Note that in 7.0, _doc is a permanent part of the path, and represents the endpoint name rather than the document type.
The include_type_name parameter in the index creation, index template, and mapping APIs will default to false. Setting the parameter at all will result in a deprecation warning.
The default mapping type is removed.Elasticsearch 8.x
Specifying types in requests is no longer supported.
The include_type_name parameter is removed.
1、创建索引并指定映射
PUT /my_index
{
"mappings": {
"properties": {
"age":{"type": "integer"},#全文检索
"email":{"type": "keyword"},#精确匹配
"name":{"type": "text"}
}
}
}
第一次存储数据的时候es就猜出了映射
第一次存储数据前可以指定映射
PUT /my_index/_mapping
{
"properties":{
"employee_id":{
"type":"keyword",
"index":false #index :false表示这个字段不能被检索,默认 是 true:
}
}
}
这里的 “index”: false,表明新增的字段不能被检索,只是一个冗余字段。
6.0以后写法
POST _reindex
{
"source":{
"index":"twitter"
},
"dest":{
"index":"new_twitters"
}
}
老版本写法
POST _reindex
{
"source":{
"index":"twitter",
"twitter":"twitter"
},
"dest":{
"index":"new_twitters"
}
}
举例:将 bank 中的 属性的映射类型修改:
创建新的索引:newbank并且自定义映射
PUT /newbank
{
"mappings": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text"
},
"age": {
"type": "integer"
},
"balance": {
"type": "long"
},
"city": {
"type": "text"
},
"email": {
"type": "keyword"
},
"employer": {
"type": "keyword"
},
"firstname": {
"type": "text"
},
"gender": {
"type": "keyword"
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "keyword"
}
}
}
}
迁移:
## 将旧索引的type 下的数据进行迁移
POST _reindex
{
"source": {
"index": "bank",
"type": "account"
},
"dest": {
"index": "newbank"
}
}
查看:
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "newbank",
"_type" : "_doc", # 没有了类型
一个tokenizer(分词器)接收一个字符流,将之分割为独立的tokens(词元,通常是独立的单词),然后输出tokens 流。
例如,whitespace tokenizer 遇到空白字符时分割文本。它会将文本**“Quick brown fox!”** 分割为**[Quick, brown, fox!]**。
该tokenizer(分词器)还负责记录各个term(词条)的顺序或position 位置(用于phrase 短语和word proximity 词近邻查询),以及term(词条)所代表的原始word(单词)的start(起始)和end(结束)的character offsets(字符偏移量)(用于高亮显示搜索的内容)。
Elasticsearch 提供了很多内置的分词器,可以用来构建custom analyzers(自定义分词器)。
关于分词器: https://www.elastic.co/guide/en/elasticsearch/reference/7.6/analysis.html
对于中文,我们需要安装额外的分词器。
1)、安装ik 分词器
注意:不能用默认 elasticsearch-plugin install xxx.zip 进行自动安装
https://github.com/medcl/elasticsearch-analysis-ik/releases?after=v6.4.2 对应es 版本安装
进入es 容器内部plugins 目录
docker exec -it 容器id /bin/bash
wget https://github.com/medcl/elasticsearchanalysisik/releases/download/v7.4.2/elasticsearch-analysis-ik-7.4.2.zip
unzip 下载的文件
rm –rf *.zip
mv elasticsearch/ ik
可以确认是否安装好了分词器
cd ../bin
elasticsearch plugin list:即可列出系统的分词器
所有的语言分词,默认使用的都是“Standard Analyzer”,但是这些分词器针对于中文的分词,并不友好。为此需要安装中文的分词器。
在前面安装的elasticsearch时,我们已经将elasticsearch容器的“/usr/share/elasticsearch/plugins”目录,映射到宿主机的“ /mydata/elasticsearch/plugins”目录下,所以比较方便的做法就是下载“/elasticsearch-analysis-ik-7.4.2.zip”文件,然后解压到目录ik下即可。安装完毕后,需要重启elasticsearch容器。
ps:过程中遇到的Linux 知识合集:
rwx 可读可写可执行
此外,在配置分词器的之前,我们需要使用 Nginx 的 conf 配置文件
参照下面进行:
随便启动一个nginx 实例,只是为了复制出配置
- docker run -p 80:80 --name nginx -d nginx:1.10
- 将容器内的配置文件拷贝到当前目录:docker container cp nginx:/etc/nginx .
- 别忘了后面的点
- 修改文件名称:mv nginx conf 把这个conf 移动到/mydata/nginx 下
- 终止原容器:docker stop nginx
- 执行命令删除原容器:docker rm $ContainerId
- 创建新的nginx;执行以下命令
docker run -p 80:80 --name nginx \
-v /mydata/nginx/html:/usr/share/nginx/html \
-v /mydata/nginx/logs:/var/log/nginx \
-v /mydata/nginx/conf:/etc/nginx \
-d nginx:1.10
- 给nginx 的html 下面放的所有资源可以直接访问;
可以这样理解:安装好nginx,把Nginx当做tomcat来用。
2)、 测试分词器
使用默认分词器
GET _analyze
{
"text":"我是中国人"
}
请观察执行结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "" ,
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "" ,
"position" : 1
},
{
"token" : "中",
"start_offset" : 2,
"end_offset" : 3,
"type" : "" ,
"position" : 2
},
{
"token" : "国",
"start_offset" : 3,
"end_offset" : 4,
"type" : "" ,
"position" : 3
},
{
"token" : "人",
"start_offset" : 4,
"end_offset" : 5,
"type" : "" ,
"position" : 4
}
]
}
GET _analyze
{
"analyzer": "ik_smart",
"text":"我是中国人"
}
输出结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "中国人",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
}
]
}
GET _analyze
{
"analyzer": "ik_max_word",
"text":"我是中国人"
}
输出结果:
{
"tokens" : [
{
"token" : "我",
"start_offset" : 0,
"end_offset" : 1,
"type" : "CN_CHAR",
"position" : 0
},
{
"token" : "是",
"start_offset" : 1,
"end_offset" : 2,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "中国人",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "中国",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "国人",
"start_offset" : 3,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 4
}
]
}
能够看出不同的分词器,分词有明显的区别,所以以后定义一个索引不能再使用默认的mapping 了,要手工建立mapping, 因为要选择分词器。
3)、自定义词库
修改 /usr/share/elasticsearch/plugins/ik/config/
中的 IKAnalyzer.cfg.xml
/usr/share/elasticsearch/plugins/ik/config
DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置comment>
<entry key="ext_dict">entry>
<entry key="ext_stopwords">entry>
<entry key="remote_ext_dict">http://192.168.56.10/fenci.txtentry>
properties>
原来的xml
DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置comment>
<entry key="ext_dict">entry>
<entry key="ext_stopwords">entry>
properties>
修改 words_location,写上我们自己的地址 :http://192.168.56.10/es/fenci.txt
按照标红的路径利用nginx 发布静态资源,按照请求路径,创建对应的文件夹以及文件,放在
nginx 的html 下,然后重启es 服务器,重启nginx。
ps:
修改完成后,需要重启elasticsearch容器,否则修改不生效。docker restart elasticsearch
更新完成后,es只会对于新增的数据用更新分词。历史数据是不会重新分词的。如果想要历史数据重新分词,需要执行:
POST my_index/_update_by_query?conflicts=proceed
乱码不用关心。
在kibana 中测试分词效果:
## 分词器
POST _analyze
{
"analyzer": "ik_max_word",
"text": "乔碧萝殿下"
}
至此,自定义分词词库我们就配置好了。
1)、9300:TCP
2)、9200:HTTP
最终选择Elasticsearch-Rest-Client(elasticsearch-rest-high-level-client)
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high.html
<properties>
<java.version>1.8java.version>
<elasticsearch.version>7.4.2elasticsearch.version>
properties>
<dependency>
<groupId>com.atguigu.gulimallgroupId>
<artifactId>gulimall-commonartifactId>
<version>0.0.1-SNAPSHOTversion>
dependency>
<dependency>
<groupId>org.elasticsearch.clientgroupId>
<artifactId>elasticsearch-rest-high-level-clientartifactId>
<version>7.4.2version>
dependency>
注意这里我们需要排除 springboot 自带的 ElasticSearch依赖:
/**
* es操作配置
* 1.导入依赖
* 2.编写配置,给容器中注入一个RestHighLevelClient
* 3.参考官方API https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-document-index.html
* @author wystart
* @create 2022-11-22 21:48
*/
@Configuration
public class GulimallElasticSearchConfig {
//es添加了安全访问规则,访问es需要添加一个安全头,就可以通过requestOptions设置
public static final RequestOptions COMMON_OPTIONS;
static {
RequestOptions.Builder builder = RequestOptions.DEFAULT.toBuilder();
// builder.addHeader("Authorization", "Bearer " + TOKEN);
// builder.setHttpAsyncResponseConsumerFactory(
// new HttpAsyncResponseConsumerFactory
// .HeapBufferedResponseConsumerFactory(30 * 1024 * 1024 * 1024));
COMMON_OPTIONS = builder.build();
}
@Bean
public RestHighLevelClient esRestClient() {
//自己拆解的
RestClientBuilder builder = null;
// final String hostname, final int port, final String scheme
builder = RestClient.builder(new HttpHost("192.168.56.10", 9200, "http"));
RestHighLevelClient client = new RestHighLevelClient(builder);
//官方给的
// RestHighLevelClient client = new RestHighLevelClient(
// RestClient.builder(
// new HttpHost("192.168.56.10", 9200, "http")));
return client;
}
}
当然我们还需要将 gulimall-search 注册 到nacos:
application.properties
# 注册中心
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848
spring.application.name=gulimall-search
GulimallSearchApplication 添加 @EnableDiscoveryClient注解
@RunWith(SpringRunner.class)//指定以spring驱动的方式跑单元测试
@SpringBootTest
public class GulimallSearchApplicationTests {
@Autowired
RestHighLevelClient client;
//测试能否获取到 es对象
@Test
public void contextLoads() {
System.out.println(client);
}
}
接下来我们开始编写测试类。
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.5/java-rest-high-create-index.html
保存方式分为同步和异步,异步方式多了个listener回调
/**
* 测试存储数据到es
* 更新也可以:index 更新和保存二合一
*/
@Test
public void indexData() throws IOException {
IndexRequest indexRequest = new IndexRequest("users");//创建索引
indexRequest.id("1");//数据的id----不写默认自动生成
// indexRequest.source("userName","zhangsan","age",18,"gender","男");
User user = new User();
user.setUserName("zhangsan");
user.setAge(18);
user.setGender("男");
String jsonString = JSON.toJSONString(user);//所有的内容必须转换成 json 数据
indexRequest.source(jsonString, XContentType.JSON);//要保存的内容
//执行创建索引和保存数据
IndexResponse index = client.index(indexRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//提取有用的响应数据
System.out.println(index);
}
@Data
class User{
private String userName;
private String gender;
private Integer age;
}
kibana测试:
GET /users/_search
新增成功
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/java-rest-high-search.html
根据以下DSL进行检索:
GET bank/_search
{
"query": {
"match": {
"address": "mill"
}
},
"aggs": {
"aggAgg": {
"terms": {
"field": "age",
"size": 10
}
},
"balanceAvg":{
"avg": {
"field": "balance"
}
}
},
"size": 0
}
检索结果:
{
"took" : 0,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"aggAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 38,
"doc_count" : 2
},
{
"key" : 28,
"doc_count" : 1
},
{
"key" : 32,
"doc_count" : 1
}
]
},
"balanceAvg" : {
"value" : 25208.0
}
}
}
利用java代码进行检索数据:
/**
* 测试从 es 中搜索数据
*/
@Test
public void searchData() throws IOException {
//1.创建检索请求
SearchRequest searchRequest = new SearchRequest();
//指定索引
searchRequest.indices("bank");
//指定DSL,检索条件
// SearchSourceBuilder sourceBuilder 封装的条件
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
//1.1 构造检索条件
// sourceBuilder.query();
// sourceBuilder.from();
// sourceBuilder.size();
// sourceBuilder.addRescorer();
sourceBuilder.query(QueryBuilders.matchQuery("address", "mill"));
//1.2 按照年龄的值分布进行聚合
TermsAggregationBuilder ageAgg = AggregationBuilders.terms("aggAgg").field("age").size(10);
sourceBuilder.aggregation(ageAgg);
//1.3 计算平均薪资
AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
sourceBuilder.aggregation(balanceAvg);
System.out.println("检索条件" + sourceBuilder.toString());
searchRequest.source(sourceBuilder);
//2.执行检索
SearchResponse searchResponse = client.search(searchRequest, GulimallElasticSearchConfig.COMMON_OPTIONS);
//3.分析结果 searchResponse
System.out.println(searchResponse.toString());
//3.1 获取所有查到的数据
SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
for (SearchHit hit : searchHits) {
// "_index": "bank",
// "_type": "account",
// "_id": "970",
// "_score": 5.4032025,
// "_source":
// hit.getIndex();hit.getType();hit.getId();
String string = hit.getSourceAsString();//将获得的记录转换为string
Acount acount = JSON.parseObject(string, Acount.class);//将string 转换为我们创建的Javabean对象
System.out.println("acount:" + acount);
}
//3.2 获取这次检索到的分析信息
Aggregations aggregations = searchResponse.getAggregations();
Terms aggAgg = aggregations.get("aggAgg");
for (Terms.Bucket bucket : aggAgg.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("年龄:" + keyAsString + "==>" + bucket.getDocCount());
}
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资:" + balanceAvg1.getValue());
}
没有加上 聚合条件,检索 address 匹配 mill的结果如下:
检索条件{"query":{"match":{"address":{"query":"mill","operator":"OR","prefix_length":0,"max_expansions":50,"fuzzy_transpositions":true,"lenient":false,"zero_terms_query":"NONE","auto_generate_synonyms_phrase_query":true,"boost":1.0}}},"aggregations":{"aggAgg":{"terms":{"field":"age","size":10,"min_doc_count":1,"shard_min_doc_count":0,"show_term_doc_count_error":false,"order":[{"_count":"desc"},{"_key":"asc"}]}},"balanceAvg":{"avg":{"field":"balance"}}}}
{"took":15,"timed_out":false,"_shards":{"total":1,"successful":1,"skipped":0,"failed":0},"hits":{"total":{"value":4,"relation":"eq"},"max_score":5.4032025,"hits":[{"_index":"bank","_type":"account","_id":"970","_score":5.4032025,"_source":{"account_number":970,"balance":19648,"firstname":"Forbes","lastname":"Wallace","age":28,"gender":"M","address":"990 Mill Road","employer":"Pheast","email":"[email protected]","city":"Lopezo","state":"AK"}},{"_index":"bank","_type":"account","_id":"136","_score":5.4032025,"_source":{"account_number":136,"balance":45801,"firstname":"Winnie","lastname":"Holland","age":38,"gender":"M","address":"198 Mill Lane","employer":"Neteria","email":"[email protected]","city":"Urie","state":"IL"}},{"_index":"bank","_type":"account","_id":"345","_score":5.4032025,"_source":{"account_number":345,"balance":9812,"firstname":"Parker","lastname":"Hines","age":38,"gender":"M","address":"715 Mill Avenue","employer":"Baluba","email":"[email protected]","city":"Blackgum","state":"KY"}},{"_index":"bank","_type":"account","_id":"472","_score":5.4032025,"_source":{"account_number":472,"balance":25571,"firstname":"Lee","lastname":"Long","age":32,"gender":"F","address":"288 Mill Street","employer":"Comverges","email":"[email protected]","city":"Movico","state":"MT"}}]},"aggregations":{"lterms#aggAgg":{"doc_count_error_upper_bound":0,"sum_other_doc_count":0,"buckets":[{"key":38,"doc_count":2},{"key":28,"doc_count":1},{"key":32,"doc_count":1}]},"avg#balanceAvg":{"value":25208.0}}}
把检索结果封装为java bean(利用Json在线工具生成 Javabean )
@ToString
@Data
static class Acount {
private int account_number;
private int balance;
private String firstname;
private String lastname;
private int age;
private String gender;
private String address;
private String employer;
private String email;
private String city;
private String state;
}
效果展示:
封装成 Javabean 对象输出:
聚合函数输出:
补充知识:
内存中的区域是如何划分的,对象的引用在哪个区域?
Java虚拟机将内存分为两个部分,一个线程共享的,一个线程私有的。线程共享的有方法区和堆,线程私有的有栈、本地方法栈和程序计数器。
堆用来存放对象实例,栈用来存放形参或局部变量。
什么是垃圾回收机制
垃圾回收可以有效的防止内存泄露,有效的使用空闲的内存。
内存泄露是指该内存空间使用完毕之后未回收,内存泄露过多会导致内存溢出,导致应用程序所占内存超出系统限制,最终被系统杀掉。
什么是垃圾
这里的垃圾是指无用的对象或其它数据等已经不被需要,但却无法被GC所释放。
所有的对象实例以及数组都要在堆上分配。堆是垃圾收集器管理的主要区域,也被称为“GC堆”;也是我们优化最多考虑的地方。
堆可以细分为:
新生代
老年代
永久代/元空间
垃圾回收
从Java8 开始,HotSpot 已经完全将永久代(Permanent Generation)移除,取而代之的是一
个新的区域—元空间(MetaSpace)。
伊甸园区能放下,就放,放不下,小GC一次,存活的放幸存者区;实在放不下,就放老年代。老年代如果还放不下,就来一个大GC,将新生代和老年代内存清理;放得下就放,放不下就报异常。
YGC触发的时机:伊甸园区的内存不够了;
FGC触发的时间:老年代的内存都不够了;
FGC要比 YGC慢很多我们要避免 FGC次数太多,影响整体性能。
老年代主要放:存活时间久;大对象
伊甸园区GC之后,将放到 幸存者区。
visual GC 垃圾回收机制:
要避免 FGC,因为 FGC比 YGC 花费的时间多很多。
补充知识:
图解Java 垃圾回收机制
垃圾回收算法共有 4种:①标记清算算法;②复制算法;③标记整理算法;④分代收集算法。
这里主要讲第④种。
1. 分代收集算法
对于一个大型的系统,当创建的对象和方法变量比较多时,堆内存中的对象也会比较多,如果逐一分析对象是否该回收,那么势必造成效率低下。分代收集算法是基于这样一个事实:不同的对象的生命周期(存活情况)是不一样的,而不同生命周期的对象位于堆中不同的区域,因此对堆内存不同区域采用不同的策略进行回收可以提高 JVM 的执行效率。当代商用虚拟机使用的都是分代收集算法:新生代对象存活率低,就采用复制算法;老年代存活率高,就用标记清除算法或者标记整理算法。Java堆内存一般可以分为新生代、老年代和永久代三个模块。
1). 新生代(Young Generation)
新生代的目标就是尽可能快速的收集掉那些生命周期短的对象,一般情况下,所有新生成的对象首先都是放在新生代的。新生代内存按照 8:1:1 的比例分为一个eden区和两个survivor(survivor0,survivor1)区,大部分对象在Eden区中生成。在进行垃圾回收时,先将eden区存活对象复制到survivor0区,然后清空eden区,当这个survivor0区也满了时,则将eden区和survivor0区存活对象复制到survivor1区,然后清空eden和这个survivor0区,此时survivor0区是空的,然后交换survivor0区和survivor1区的角色(即下次垃圾回收时会扫描Eden区和survivor1区),即保持survivor0区为空,如此往复。特别地,当survivor1区也不足以存放eden区和survivor0区的存活对象时,就将存活对象直接存放到老年代。如果老年代也满了,就会触发一次FullGC,也就是新生代、老年代都进行回收。注意,新生代发生的GC也叫做MinorGC,MinorGC发生频率比较高,不一定等 Eden区满了才触发。
2). 老年代(Old Generation)
老年代存放的都是一些生命周期较长的对象,就像上面所叙述的那样,在新生代中经历了N次垃圾回收后仍然存活的对象就会被放到老年代中。此外,老年代的内存也比新生代大很多(大概比例是1:2),当老年代满时会触发Major GC(Full GC),老年代对象存活时间比较长,因此FullGC发生的频率比较低。
3). 永久代(Permanent Generation)
永久代主要用于存放静态文件,如Java类、方法等。永久代对垃圾回收没有显著影响,但是有些应用可能动态生成或者调用一些class,例如使用反射、动态代理、CGLib等bytecode框架时,在这种时候需要设置一个比较大的永久代空间来存放这些运行过程中新增的类。
2.小结:
由于对象进行了分代处理,因此垃圾回收区域、时间也不一样。垃圾回收有两种类型,Minor GC 和 Full GC。
Minor GC:对新生代进行回收,不会影响到年老代。因为新生代的 Java 对象大多死亡频繁,所以 Minor GC 非常频繁,一般在这里使用速度快、效率高的算法,使垃圾回收能尽快完成。
Full GC:也叫 Major GC,对整个堆进行回收,包括新生代和老年代。由于Full GC需要对整个堆进行回收,所以比Minor GC要慢,因此应该尽可能减少Full GC的次数,导致Full GC的原因包括:老年代被写满、永久代(Perm)被写满和System.gc()被显式调用等。
3. 垃圾收集器
如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。下图展示了7种作用于不同分代的收集器,其中用于回收新生代的收集器包括Serial、PraNew、Parallel Scavenge,回收老年代的收集器包括Serial Old、Parallel Old、CMS,还有用于回收整个Java堆的G1收集器。不同收集器之间的连线表示它们可以搭配使用。
Serial收集器(复制算法): 新生代单线程收集器,标记和清理都是单线程,优点是简单高效;
Serial Old收集器 (标记-整理算法): 老年代单线程收集器,Serial收集器的老年代版本;
ParNew收集器 (复制算法): 新生代收并行集器,实际上是Serial收集器的多线程版本,在多核CPU环境下有着比Serial更好的表现;
Parallel Scavenge收集器 (复制算法): 新生代并行收集器,追求高吞吐量,高效利用 CPU。吞吐量 = 用户线程时间/(用户线程时间+GC线程时间),高吞吐量可以高效率的利用CPU时间,尽快完成程序的运算任务,适合后台应用等对交互相应要求不高的场景;
Parallel Old收集器 (标记-整理算法): 老年代并行收集器,吞吐量优先,Parallel Scavenge收集器的老年代版本;
CMS(Concurrent Mark Sweep)收集器(标记-清除算法): 老年代并行收集器,以获取最短回收停顿时间为目标的收集器,具有高并发、低停顿的特点,追求最短GC回收停顿时间。
G1(Garbage First)收集器 (标记-整理算法): Java堆并行收集器,G1收集器是JDK1.7提供的一个新收集器,G1收集器基于“标记-整理”算法实现,也就是说不会产生内存碎片。此外,G1收集器不同于之前的收集器的一个重要特点是:G1回收的范围是整个Java堆(包括新生代,老年代),而前六种收集器回收的范围仅限于新生代或老年代。
4.内存分配与回收策略
Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存 以及 回收分配给对象的内存。一般而言,对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓存(TLAB),将按线程优先在TLAB上分配。少数情况下也可能直接分配在老年代中。总的来说,内存分配规则并不是一层不变的,其细节取决于当前使用的是哪一种垃圾收集器组合,还有虚拟机中与内存相关的参数的设置。
1) 对象优先在Eden分配,当Eden区没有足够空间进行分配时,虚拟机将发起一次MinorGC。现在的商业虚拟机一般都采用复制算法来回收新生代,将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor。 当进行垃圾回收时,将Eden和Survivor中还存活的对象一次性地复制到另外一块Survivor空间上,最后处理掉Eden和刚才的Survivor空间。(HotSpot虚拟机默认Eden和Survivor的大小比例是8:1)当Survivor空间不够用时,需要依赖老年代进行分配担保。
2) 大对象直接进入老年代。所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组。
3) 长期存活的对象将进入老年代。当对象在新生代中经历过一定次数(默认为15)的Minor GC后,就会被晋升到老年代中。
4) 动态对象年龄判定。为了更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。
需要注意的是,Java的垃圾回收机制是Java虚拟机提供的能力,用于在空闲时间以不定时的方式动态回收无任何引用的对象占据的内存空间。也就是说,垃圾收集器回收的是无任何引用的对象占据的内存空间而不是对象本身。
Jdk 的两个小工具jconsole、jvisualvm(升级版的jconsole);通过命令行启动,可监控本地和
远程应用。远程应用需要配置。
通过 jconsole 命令启动
1、jconsole控制台
2、jvisualvm 能干什么
监控内存泄露,跟踪垃圾回收,执行时内存、cpu 分析,线程分析…
运行:正在运行的
休眠:sleep
等待:wait
驻留:线程池里面的空闲线程
监视:阻塞的线程,正在等待锁
3、安装插件方便查看gc
Cmd 启动jvisualvm
工具->插件
如果503 错误解决:
提示 “https://github.com/visualvm/visualvm.src/releases/download/1.3.9/com-sun-tools-visualvm-modules-visualgc.nbm中出现网络问题”
解决:
jdk安装Visual Gc,报错检查代理设置或稍后重试。服务器目前可能不可用。 您可能还需要确保防火墙不会阻塞网络通信。 您的高速缓存可能已过期。请单击“检查更新”以刷新内容。解决
用解决方式2,下载对应版本GC,然后本地安装。
1、中间件指标
2、数据库指标
jvm 调优,调的是稳定,并不能带给你性能的大幅提升。服务稳定的重要性就不用多说了,保证服务的稳定,gc 永远会是Java 程序员需要考虑的不稳定因素之一。复杂和高并发下的服务,必须保证每次gc 不会出现性能下降,各种性能指标不会出现波动,gc 回收规律而且干净,找到合适的jvm 设置。Full gc 最会影响性能,根据代码问题,避免full gc 频率。可以适当调大年轻代容量,让大对象可以在年轻代触发yong gc,调整大对象在年轻代的回收频次,尽可能保证大对象在年轻代回收,减小老年代缩短回收时间;
1、几个常用工具
2、命令示例
在使用这些工具前,先用JPS 命令获取当前的每个JVM 进程号,然后选择要查看的JVM。
3、调优项
官方文档:https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html#BGBCIEFC
压力测试考察当前软硬件环境下系统所能承受的最大负荷并帮助找出系统瓶颈所在。压测都是为了系统在线上的处理能力和稳定性维持在一个标准范围内,做到心中有数。
使用压力测试,我们有希望找到很多种用其他测试方法更难发现的错误。有两种错误类型是:
内存泄漏,并发与同步。
有效的压力测试系统将应用以下这些关键条件:重复,并发,量级,随机变化。
1)、JMeter 安装
https://jmeter.apache.org/download_jmeter.cgi
jmeter 历史版本:https://archive.apache.org/dist/jmeter/binaries/
下载对应的压缩包,解压运行jmeter.bat 即可
注意:Jmeter 启动闪一下就不启动,解决办法:jmeter闪一下就关闭,无法启动
添加 环境变量即可。
2)、JMeter 压测示例
①、添加线程组
可以设置成中文,方便初学者进行使用熟悉。
线程组参数详解:
②、添加HTTP 请求
③、添加监听器
④、启动压测&查看分析结果
结果分析
3、JMeter Address Already in use 错误解决
windows 本身提供的端口访问机制的问题。
Windows 提供给TCP/IP 链接的端口为1024-5000,并且要四分钟来循环回收他们。就导致
我们在短时间内跑大量的请求时将端口占满了。
- cmd 中,用regedit 命令打开注册表
- 在HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters 下,
1 .右击parameters,添加一个新的DWORD,名字为MaxUserPort
2 .然后双击MaxUserPort,输入数值数据为65534,基数选择十进制(如果是分布式运行的话,控制机器和负载机器都需要这样操作哦)- 修改配置完毕之后记得重启机器才会生效
windows官方解决办法:https://support.microsoft.com/zh-cn/help/196271/when-you-try-to-connect-from-tcp-ports-greater-than-5000-you-receive-tTCPTimedWaitDelay:30
按表格中进行压测。
线程数这里统一 都是 50,避免设置太高导致 内存爆满等情况。
压测 1分10秒
汇总报告
聚合报告
docker stats :实时查看 状态
内存比较浪费,因为 Nginx 基本只做转发,并不实际处理请求,主要是空闲状态。
压测一个简单服务
IndexController
//压力测试
//简单服务
//搭配中间件
@ResponseBody
@GetMapping("/hello")
public String hello(){
return "hello";
}
- id: product_route
uri: lb://gulimall-product
predicates:
- Path=/api/product/**,/hello
filters:
- RewritePath=/api/(?<segment>/?.*), /$\{segment}
#http://localhost:88/api/product/gory/list/tree http://localhost:10000/product/gory/list/tree
略有提升
压测 首页开缓存 、数据库优化、日志级别提高(这里的首页就是首页一级分类)
补充:日志等级由低到高:debug
优化2
数据库字段 parent_cid 没有索引的条件下
/**
* 查找 1级分类
* parent_cid = 0 或者 cat_level = 1
* @return
*/
@Override
public List<CategoryEntity> getLevel1Categorys() {
long l = System.currentTimeMillis();//压力测试
List<CategoryEntity> categoryEntities = baseMapper.selectList(new QueryWrapper<CategoryEntity>().eq("parent_cid", 0));
System.out.println("消耗时间:" + (System.currentTimeMillis() - l));//测试没有索引的条件下,具体时间耗费
return categoryEntities;
}
优化3
给 parent_cid 添加索引
吞吐量实在太低。
动态请求转交给 微服务;静态请求直接返回。
后台服务专心处理动态资源,继而可以提升很大的吞吐量。
①将静态资源文件 放在 Nginx下:这里将商品服务 static下的index资源复制过来,商品服务下的可以删除。
②给index.html中的静态资源加上前缀。
css:
js:
img:
③在 gulimall.conf 中修改,添加 路径
测试
①先将 线程数设置为50进行测试,看优化效果。
确实有提升。
②将线程 设置 为 200,模拟 线上应用内存崩溃宕机。
可以看到 老年代以及伊甸园区内存都溢满了,FGC次数频繁:
这是因为我们给商品服务设置的内存太小了,仅有100M,所以很容易爆满。
idea控制台报错,堆溢出等问题:
首页访问不了,因为 线上应用期间,CPU 内存爆满、卡死,将应用挤下线。
优化:加大内存,避免 老年代和新生代 内存满了之后一直GC,拖慢时间。
200线程数压测。
伊甸园区内存可能爆满,GC次数多(频繁创建临时对象),老年代GC次数减少。
1.将数据库的多次查询变为一次,之前是嵌套查询,导致和数据库做很多次交互
baseMapper.selectList(new QueryWrapper<CategoryEntity>().eq("parent_cid", parentCid));
将上面的查询代码抽取为一个方法,继而减少 查询三级分类这个方法对数据库的多次查询,优化DB操作。
最终结果改造:
@Override
public Map<String, List<Catelog2Vo>> getCatalogJson() {
/**
* 1.将数据库的多次查询变为一次,之前是嵌套查询,导致和数据库做很多次交互
* 后续查询操作从这次查询结果中取结果
*/
List<CategoryEntity> selectList = baseMapper.selectList(null);//不传任何条件,就代表查询所有。
//1.查出所有1级分类
List<CategoryEntity> level1Categorys = getParent_cid(selectList,0L);//1级分类的 父id 是 0
//2.封装数据
Map<String, List<Catelog2Vo>> parent_cid = level1Categorys.stream().collect(Collectors.toMap(k -> k.getCatId().toString(), v -> {
//1.每一个的一级分类,查到这个一级分类的二级分类
List<CategoryEntity> categoryEntities = getParent_cid(selectList,v.getCatId());//将正在遍历的元素v的catId作为 parent_cid的值,就可以找出它的子分类
//2.封装上面的结果
List<Catelog2Vo> catelog2Vos = null;
if (categoryEntities != null) {
catelog2Vos = categoryEntities.stream().map(l2 -> {
Catelog2Vo catelog2Vo = new Catelog2Vo(v.getCatId().toString(), null, l2.getCatId().toString(), l2.getName());
//1.找到当前二级分类的三级分类,封装成 vo
List<CategoryEntity> level3Catelog = getParent_cid(selectList,l2.getCatId());
// 三级分类有数据的情况下
if (level3Catelog != null){
List<Catelog2Vo.Catelog3Vo> collect = level3Catelog.stream().map(l3 -> {
//2.封装成指定格式
Catelog2Vo.Catelog3Vo catelog3Vo = new Catelog2Vo.Catelog3Vo(l2.getCatId().toString(), l3.getCatId().toString(), l3.getName());
return catelog3Vo;
}).collect(Collectors.toList());
catelog2Vo.setCatalog3List(collect);
}
return catelog2Vo;
}).collect(Collectors.toList());
}
return catelog2Vos;
}));
return parent_cid;
}
private List<CategoryEntity> getParent_cid(List<CategoryEntity> selectList,Long parent_cid) {
// return baseMapper.selectList(new QueryWrapper().eq("parent_cid", parentCid));
//从已知的集合 selectList (查询所有)中找 出 ParentCid == 指定的值
List<CategoryEntity> collect = selectList.stream().filter(item -> item.getParentCid() == parent_cid).collect(Collectors.toList());
return collect;
}
为了开发期间方便,改为100m
测试:
可以看出,即使优化了业务操作,其吞吐量也不是很高,所以我们接下来使用分布式系统中的性能提升大神器:缓存。合理运用缓存,可以给系统一个质的提升。
总结:
为了系统性能的提升,我们一般都会将部分数据放入缓存中,加速访问。而db 承担数据落盘工作。
哪些数据适合放入缓存?
举例:电商类应用,商品分类,商品列表等适合缓存并加一个失效时间(根据数据更新频率来定),后台如果发布一个商品,买家需要5 分钟才能看到新的商品一般还是可以接受的。
data = cache.load(id);//从缓存加载数据
If(data == null){
data = db.load(id);//从数据库加载数据
cache.put(id,data);//保存到cache 中
}
return data;
注意:在开发中,凡是放入缓存中的数据我们都应该指定过期时间,使其可以在系统即使没有主动更新数据也能自动触发数据加载进缓存的流程。避免业务崩溃导致的数据永久不一致问题。
本地缓存的问题:缓存 组件和 项目部署在一起;如果是单体应用,部署在一台机器上,可以有很快的效果,但是在分布式系统下不适用。
这种方式的问题在于:多台机器之间不能互相使用同一缓存。譬如:①一个请求负载均衡到第一个机器,查出来数据放到缓存中,如果第二次 负载均衡到另外一台机器,那就还得再查一次;②如果一台机器缓存做了修改,其他机器缓存因为负载均衡的原因,不能同时修改,那么就会出现数据一致性问题。
最终的解决方案:使用缓存中间件,集中的向同一个地方缓存数据,就不会出现数据不一致问题。
1、引入依赖:redis的场景启动器
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
2、配置 redis
spring:
redis:
host: 192.168.56.10
port: 6379
3、使用RedisTemplate 操作redis
@Autowired
StringRedisTemplate stringRedisTemplate;
@Test
public void testStringRedisTemplate(){
ValueOperations<String, String> ops = stringRedisTemplate.opsForValue();
//保存
ops.set("hello","world_" + UUID.randomUUID().toString());
//查询
String s = ops.get("hello");
System.out.println(s);
}
redis 保存数据的 5大基本类型:
opsForValue:简单的自变量值
Hash:按照 map形式 kv存储
List: 按照数组存储
Set : 集合
Zset:带排序的集合
效果展示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Djr3vB6y-1672324453424)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233817326-1588767069.png)]
整合Redis总结:
* 6.整合Redis * 1)、引入data-redis-starter * 2)、简单配置redis 的host 等信息 * 3)、使用 springboot自动配置好的 StringRedisTemplate 来操作 redis * redis -> Map;存放数据key,数据值 value *
因为三级分类的数据不会经常变化,所以可以使用缓存。
1、修改 CategoryServiceImpl,将 getCatalogJson 方法 加入缓存逻辑
将之前的 getCatalogJson 方法改名为 getCatalogJsonFromDb
//从数据库查询并封装分类数据
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDb(){}
加入缓存 的 getCatalogJson 方法
@Autowired
StringRedisTemplate redisTemplate;
@Override
public Map<String, List<Catelog2Vo>> getCatalogJson() {
//给缓存中放json字符串,拿出的json字符串,还需要逆转为能用的对象类型:【序列化与反序列化】
//1.加入缓存逻辑,缓存中存的数据时json字符串。
//JSON跨语言,跨平台兼容。
String catalogJSON = redisTemplate.opsForValue().get("catalogJSON");
if (StringUtils.isEmpty(catalogJSON)){
//2.缓存中没有,查询数据库
Map<String, List<Catelog2Vo>> catalogJsonFromDb = getCatalogJsonFromDb();
//3.查到的数据再放入缓存中,将对象转为JSON放在缓存汇总
String s = JSON.toJSONString(catalogJsonFromDb);
redisTemplate.opsForValue().set("catalogJSON",s);
return catalogJsonFromDb;
}
//转为我们指定的对象。
//TypeReference 是一个受保护的方法:protected TypeReference(Type... actualTypeArguments){},所以我们使用匿名内部类的方式创建
Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
});
return result;
}
2、效果展示
测试地址:http://gulimall.com//index/catalog.json
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9yhkWuPY-1672324453424)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233816959-1108505379.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UG8ElhLt-1672324453424)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233816573-1025484751.png)]
3、堆外内存溢出
50线程数压测。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dte4MW5u-1672324453425)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233816027-1338818494.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UHKYvCss-1672324453425)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233815630-237125882.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QhT3bC9z-1672324453425)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233815282-707515609.png)]
吞吐量是上来了,但是很多错误。
刷新页面:
Redis exception; nested exception is io.lettuce.core.RedisException: io.netty.util.internal.OutOfDirectMemoryError: failed to allocate 46137344 byte(s) of direct memory (used: 58720256, max: 100663296)
OutOfDirectMemoryError: 堆外内存溢出问题,以后项目上线经常能遇到。
直接内存 就是堆外内存:direct memory
//TODO 产生堆外内存溢出:OutOfDirectMemoryError
//1)、springboot2.0 以后默认使用lettuce 作为操作 redis的客户端。它使用netty进行网络通信。
//2)、lettuce 的bug 导致 netty 堆外内存溢出 -Xmx300m;netty如果没有指定堆外内存,默认使用 -Xmx300m
// 可以通过 -Dio.netty.maxDirectMemory 进行设置
// 解决方法:不能使用 -Dio.netty.maxDirectMemory 只去调大堆外内存。
// 1)、升级 lettuce 客户端。优点:底层使用 netty 进行网络框架,吞吐量大
// 2)、切换使用 jedis。缺点:老版的客户端,很久没有更新了
// 这里使用 切换 jedis,以后线上的时候切换 lettuce,可以通过线上日志的方式进行解决。
//redisTemplate:
// lettuce、jedis操作redis的底层客户端,而spring再次封装成redisTemplate,以后我们使用 redisTemplate 操作redis就行。
这里使用 切换 jedis,以后线上的时候切换 lettuce,可以通过线上日志的方式进行解决。
引入jedis 依赖 ,排除 lettuce
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
<exclusions>
<exclusion>
<groupId>io.lettucegroupId>
<artifactId>lettuce-coreartifactId>
exclusion>
exclusions>
dependency>
<dependency>
<groupId>redis.clientsgroupId>
<artifactId>jedisartifactId>
dependency>
测试:
老年代经常内存满,这是因为我们内存设置的小的问题。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uCSKn8Bt-1672324453426)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233812125-1527358074.png)]
可以看出吞吐量确实有显著提升。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HvyCsYP1-1672324453426)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233810870-1393688247.png)]
缓存穿透是查询一个永不存在的数据,结果是当大量请求因为查询不到直接转到数据库,导致崩溃;
缓存雪崩是大面积key同时失效,刚好大量请求查询的就是这些过期的key,结果是当大量请求因为查询不到直接转到数据库,导致崩溃;
缓存击穿是某一个key(高频,热点),失效的时候正好大量请求同时进来,结果是当大量请求因为查询不到直接转到数据库,导致崩溃。
官方课件:
先来解决大并发读情况下的缓存失效问题;
1、缓存穿透
- 缓存穿透是指查询一个一定不存在的数据,由于缓存是不命中,将去查询数据库,但是数
据库也无此记录,我们没有将这次查询的null 写入缓存,这将导致这个不存在的数据每次
请求都要到存储层去查询,失去了缓存的意义。- 在流量大时,可能DB 就挂掉了,要是有人利用不存在的key 频繁攻击我们的应用,这就是
漏洞。- 解决:
缓存空结果、并且设置短的过期时间。
2、缓存雪崩
- 缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失
效,请求全部转发到DB,DB 瞬时压力过重雪崩。- 解决:
原有的失效时间基础上增加一个随机值,比如1-5 分钟随机,这样每一个缓存的过期时间的
重复率就会降低,就很难引发集体失效的事件。
3、缓存击穿
- 对于一些设置了过期时间的key,如果这些key 可能会在某些时间点被超高并发地访问,
是一种非常“热点”的数据。- 这个时候,需要考虑一个问题:如果这个key 在大量请求同时进来前正好失效,那么所
有对这个key 的数据查询都落到db,我们称为缓存击穿。- 解决:
加锁
缓存穿透和缓存雪崩比较好解决,这里我们先考虑解决 缓存击穿的加锁问题。
本地锁:不管是 方法上加 this,还是同步代码块上加this,这都是将当前实例作为锁的,当前实例在我们容器中是单实例的,但是我们一个项目一个容器:一个商品服务对应一个容器;
比如我们商品服务有10台机器,那我们就有10个容器,就有10把锁:因为this只代表我们当前实例的这个对象,那每一个this都是不同的锁。
最终的结果就是:分布式情况下,有几台机器,就有几个进程进入拿着锁。这里就是有10个进程进入到数据库中查数据。
所以,本地锁只能锁住当前进程。
如果我们想要在大并发情况下,比如80万请求过来,最终只放一个进程进去,就需要分布式锁。
分布式锁处理的比较慢一点,本地锁比较快一点。
本地锁在分布式情况下,缺点就是锁不住所有的请求。其实在当前情况:商品服务下,本地锁也是可以的,因为你比如1000万请求,但是你只有100台机器,你放100个请求到数据库,给数据库带来的压力也不是很大。
分布式锁可以锁住所有的请求。
注意,我们需要考虑 锁的时序问题。
问题:当1号线程从数据库中查完数据,释放锁之后,将结果保存到缓存中,保存过程中需要一定的时间;这时如果2号线程拿锁进来,查询,发现缓存中没有,就会查询数据库,继而导致查询2次数据库。
因为第一次 将结果放入缓存,比如刚启动服务等,需要准备线程池等东西,需要有一定的准备时间。
解决方法:将结果放入缓存之后才释放锁。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UD1MUDlY-1672324453427)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233809468-516739550.png)]
①这里我们先测试 本地锁在一个商品服务中:
@Override
public Map<String, List<Catelog2Vo>> getCatalogJson() {
//给缓存中放json字符串,拿出的json字符串,还需要逆转为能用的对象类型:【序列化与反序列化】
/**
* 1、空结果缓存:解决缓存穿透
* 2、设置过期时间(加随机值):解决缓存雪崩
* 3、加锁:解决缓存击穿
*/
//1.加入缓存逻辑,缓存中存的数据时json字符串。
//JSON跨语言,跨平台兼容。
String catalogJSON = redisTemplate.opsForValue().get("catalogJSON");
if (StringUtils.isEmpty(catalogJSON)){
//2.缓存中没有,查询数据库
System.out.println("缓存不命中.....将要查询数据库...");
Map<String, List<Catelog2Vo>> catalogJsonFromDb = getCatalogJsonFromDb();
return catalogJsonFromDb;
}
System.out.println("缓存命中.....直接返回...");
//转为我们指定的对象。
//TypeReference 是一个受保护的方法:protected TypeReference(Type... actualTypeArguments){},所以我们使用匿名内部类的方式创建
Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
});
return result;
}
//从数据库查询并封装分类数据
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDb() {
//1.如果缓存中有就用缓存中的
// Map> catalogJson = (Map>) cache.get("catalogJson");
// if (cache.get("catalogJson") == null){
// //调用业务 xxxxx
// //返回数据又放入缓存
// cache.put("catalogJson",parent_cid);
// }
// return catalogJson;
//只要是同一把锁,就能锁住需要这个锁的所有线程
//1、synchronized (this):SpringBoot所有的组件在容器中都是单例的。this:当前对象
// 也可以加在 方法上: public synchronized Map> getCatalogJsonFromDb() {
//TODO 本地锁:synchronized,JUC(Lock)----本地锁也叫进程锁,只能锁住当前进程,在分布式情况下,想要锁住所有,必须使用分布式锁。
synchronized (this){
//得到锁以后,我们应该再去缓存中确定一次,如果没有才需要继续查询
String catalogJSON = redisTemplate.opsForValue().get("catalogJSON");
if (!StringUtils.isEmpty(catalogJSON)){
//缓存不为 null ;直接返回
Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
});
return result;
}
System.out.println("查询了数据库.....");
/**
* 1.将数据库的多次查询变为一次,之前是嵌套查询,导致和数据库做很多次交互
* 后续查询操作从这次查询结果中取结果
*/
List<CategoryEntity> selectList = baseMapper.selectList(null);//不传任何条件,就代表查询所有。
//1.查出所有1级分类
List<CategoryEntity> level1Categorys = getParent_cid(selectList,0L);//1级分类的 父id 是 0
//2.封装数据
Map<String, List<Catelog2Vo>> parent_cid = level1Categorys.stream().collect(Collectors.toMap(k -> k.getCatId().toString(), v -> {
//1.每一个的一级分类,查到这个一级分类的二级分类
List<CategoryEntity> categoryEntities = getParent_cid(selectList,v.getCatId());//将正在遍历的元素v的catId作为 parent_cid的值,就可以找出它的子分类
//2.封装上面的结果
List<Catelog2Vo> catelog2Vos = null;
if (categoryEntities != null) {
catelog2Vos = categoryEntities.stream().map(l2 -> {
Catelog2Vo catelog2Vo = new Catelog2Vo(v.getCatId().toString(), null, l2.getCatId().toString(), l2.getName());
//1.找到当前二级分类的三级分类,封装成 vo
List<CategoryEntity> level3Catelog = getParent_cid(selectList,l2.getCatId());
// 三级分类有数据的情况下
if (level3Catelog != null){
List<Catelog2Vo.Catelog3Vo> collect = level3Catelog.stream().map(l3 -> {
//2.封装成指定格式
Catelog2Vo.Catelog3Vo catelog3Vo = new Catelog2Vo.Catelog3Vo(l2.getCatId().toString(), l3.getCatId().toString(), l3.getName());
return catelog3Vo;
}).collect(Collectors.toList());
catelog2Vo.setCatalog3List(collect);
}
return catelog2Vo;
}).collect(Collectors.toList());
}
return catelog2Vos;
}));
//3.查到的数据再放入缓存中,将对象转为JSON放在缓存汇总
String s = JSON.toJSONString(parent_cid);
redisTemplate.opsForValue().set("catalogJSON",s,1, TimeUnit.DAYS);//设置过期时间1天
return parent_cid;
}
}
注意这里需要将结果放入缓存中,然后再释放锁,所以需要将放入缓存的代码放入 同步代码块中。
测试:50个线程
只查询了一次数据库。
②接下来我们测试 本地锁在 分布式情况下的结果:
设置多个商品服务
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dZAuP9Uo-1672324453428)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233808068-1727462261.png)]
端口设置:–server.port=10001…
设置 共4个商品服务。
测试:100个并发循环5次。
利用 Nginx 转发给网关,网关负载均衡到每个服务。
结果就是 :4个商品服务,每一个都查询了1次数据库,因为一共有4个进程的原因,本地锁只能锁住当前进程。
阶段一>阶段 三 :就是为了将加锁做成原子性的。
阶段四—>阶段五:将解锁做成原子性的。
核心:加锁和删锁都要保证原子性。结果就是:原子加锁;原子解锁。
补充:
redis官网对 set命令的解释:
SET key value [EX seconds] [PX milliseconds] [NX|XX]
起始版本:1.0.0
**时间复杂度:**O(1)
Set key
to hold the string value
. If key
already holds a value, it is overwritten, regardless of its type. Any previous time to live associated with the key is discarded on successful SET
operation.
将键key
设定为指定的“字符串”值。
如果 key 已经保存了一个值,那么这个操作会直接覆盖原来的值,并且忽略原始类型。
当set
命令执行成功之后,之前设置的过期时间都将失效
选项
从2.6.12版本开始,redis为SET
命令增加了一系列选项:
EX
seconds – Set the specified expire time, in seconds.PX
milliseconds – Set the specified expire time, in milliseconds.NX
– Only set the key if it does not already exist.XX
– Only set the key if it already exist.EX
seconds – 设置键key的过期时间,单位时秒PX
milliseconds – 设置键key的过期时间,单位时毫秒NX
– 只有键key不存在的时候才会设置key的值XX
– 只有键key存在的时候才会设置key的值注意: 由于SET
命令加上选项已经可以完全取代SETNX, SETEX, PSETEX的功能,所以在将来的版本中,redis可能会不推荐使用并且最终抛弃这几个命令。
返回值
simple-string-reply:如果SET
命令正常执行那么回返回OK
,否则如果加了NX
或者 XX
选项,但是没有设置条件。那么会返回nil。
例子
redis> SET mykey "Hello"
OK
redis> GET mykey
"Hello"
redis>
设计模式
注意: 下面这种设计模式并不推荐用来实现redis分布式锁。应该参考the Redlock algorithm的实现,因为这个方法只是复杂一点,但是却能保证更好的使用效果。
命令 SET resource-name anystring NX EX max-lock-time
是一种用 Redis 来实现锁机制的简单方法。
如果上述命令返回OK
,那么客户端就可以获得锁(如果上述命令返回Nil,那么客户端可以在一段时间之后重新尝试),并且可以通过DEL命令来释放锁。
客户端加锁之后,如果没有主动释放,会在过期时间之后自动释放。
可以通过如下优化使得上面的锁系统变得更加鲁棒:
上述优化方法会避免下述场景:a客户端获得的锁(键key)已经由于过期时间到了被redis服务器删除,但是这个时候a客户端还去执行DEL命令。而b客户端已经在a设置的过期时间之后重新获取了这个同样key的锁,那么a执行DEL就会释放了b客户端加好的锁。
解锁脚本的一个例子将类似于以下:
if redis.call("get",KEYS[1]) == ARGV[1]
then
return redis.call("del",KEYS[1])
else
return 0
end
这个脚本执行方式如下:
EVAL …script… 1 resource-name token-value
redis 中文文档
最终代码结果:
注意:为了后续简单起见,将部分代码抽取成一个方法 getDataFromDb。
private Map<String, List<Catelog2Vo>> getDataFromDb() {
String catalogJSON = redisTemplate.opsForValue().get("catalogJSON");
if (!StringUtils.isEmpty(catalogJSON)) {
//缓存不为 null ;直接返回
Map<String, List<Catelog2Vo>> result = JSON.parseObject(catalogJSON, new TypeReference<Map<String, List<Catelog2Vo>>>() {
});
return result;
}
System.out.println("查询了数据库.....");
/**
* 1.将数据库的多次查询变为一次,之前是嵌套查询,导致和数据库做很多次交互
* 后续查询操作从这次查询结果中取结果
*/
List<CategoryEntity> selectList = baseMapper.selectList(null);//不传任何条件,就代表查询所有。
//1.查出所有1级分类
List<CategoryEntity> level1Categorys = getParent_cid(selectList, 0L);//1级分类的 父id 是 0
//2.封装数据
Map<String, List<Catelog2Vo>> parent_cid = level1Categorys.stream().collect(Collectors.toMap(k -> k.getCatId().toString(), v -> {
//1.每一个的一级分类,查到这个一级分类的二级分类
List<CategoryEntity> categoryEntities = getParent_cid(selectList, v.getCatId());//将正在遍历的元素v的catId作为 parent_cid的值,就可以找出它的子分类
//2.封装上面的结果
List<Catelog2Vo> catelog2Vos = null;
if (categoryEntities != null) {
catelog2Vos = categoryEntities.stream().map(l2 -> {
Catelog2Vo catelog2Vo = new Catelog2Vo(v.getCatId().toString(), null, l2.getCatId().toString(), l2.getName());
//1.找到当前二级分类的三级分类,封装成 vo
List<CategoryEntity> level3Catelog = getParent_cid(selectList, l2.getCatId());
// 三级分类有数据的情况下
if (level3Catelog != null) {
List<Catelog2Vo.Catelog3Vo> collect = level3Catelog.stream().map(l3 -> {
//2.封装成指定格式
Catelog2Vo.Catelog3Vo catelog3Vo = new Catelog2Vo.Catelog3Vo(l2.getCatId().toString(), l3.getCatId().toString(), l3.getName());
return catelog3Vo;
}).collect(Collectors.toList());
catelog2Vo.setCatalog3List(collect);
}
return catelog2Vo;
}).collect(Collectors.toList());
}
return catelog2Vos;
}));
//3.查到的数据再放入缓存中,将对象转为JSON放在缓存汇总
String s = JSON.toJSONString(parent_cid);
redisTemplate.opsForValue().set("catalogJSON", s, 1, TimeUnit.DAYS);//设置过期时间1天
return parent_cid;
}
加了分布式锁的查询三级分类代码:
//从数据库查询并封装分类数据-----分布式锁
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDbWithRedisLock() {
//1.占分布式锁。去redis占坑
String uuid = UUID.randomUUID().toString();
Boolean lock = redisTemplate.opsForValue().setIfAbsent("lock", uuid,300,TimeUnit.SECONDS);
if (lock){
System.out.println("获取分布式锁成功....");
//加锁成功...执行业务
//2.设置过期世家你,必须和加锁是同步的,原子的
// redisTemplate.expire("lock",300,TimeUnit.SECONDS);
Map<String, List<Catelog2Vo>> dataFromDb ;
try{
dataFromDb = getDataFromDb();
}finally {
//删除锁:原子性
String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
Long lock1 = redisTemplate.execute(new DefaultRedisScript<Long>(script, Long.class), Arrays.asList("lock"), uuid);
}
//获取值对比+对比成功删除=原子操作 lua脚本解锁
// String lockValue = redisTemplate.opsForValue().get("lock");
// if (uuid.equals(lockValue)){
// //删除我自己的锁
// redisTemplate.delete("lock");//删除锁,解除坑位
// }
return dataFromDb;
}else{
System.out.println("获取分布式锁失败....等待重试");
//加锁失败...重试。synchronized():会一直监听,只要别人一释放锁,就会拿到:自旋的方式。
//休眠100ms重试
try {
Thread.sleep(200);
}catch (Exception e){
}
return getCatalogJsonFromDbWithRedisLock();//自旋的方式
}
}
注意:之前测试 本地锁的那个方法改名:getCatalogJsonFromDbWithLocalLock
压力测试:100个线程循环5次。
最终的结果:4个分布式项目中只有一个查询了数据库。
之前我们自己编写的简单分布式锁并不是太好,而且之前new的对象,都是在本地进程中的,
使用redisson,创建的对象都是分布式对象,公共的。接下来我们使用 Redisson来设置分布式锁。
1、简介
Redisson 是架设在Redis 基础上的一个Java 驻内存数据网格(In-Memory Data Grid)。充分的利用了Redis 键值数据库提供的一系列优势,基于Java 实用工具包中常用接口,为使用者提供了一系列具有分布式特性的常用工具类。使得原本作为协调单机多线程并发程序的工具包获得了协调分布式多机多线程并发系统的能力,大大降低了设计和研发大规模分布式系统的难度。同时结合各富特色的分布式服务,更进一步简化了分布式环境中程序相互之间的协作。
redisson使用文档 : https://github.com/redisson/redisson/wiki/
2、引入依赖
<dependency>
<groupId>org.redissongroupId>
<artifactId>redissonartifactId>
<version>3.12.0version>
dependency>
3、编写配置
@Configuration
public class MyRedissonConfig {
/**
* 所有对 Redisson的使用都是通过RedissonClient对象
* @return
* @throws IOException
*/
@Bean(destroyMethod = "shutdown")
public RedissonClient redisson() throws IOException {
//1、创建配置
Config config = new Config();
// Redis url should start with redis:// or rediss:// (for SSL connection)
config.useSingleServer().setAddress("redis://192.168.56.10:6379");
//2、根据Config 创建出 RedissonClient实例
RedissonClient redissonClient = Redisson.create(config);
return redissonClient;
}
}
4、测试
@Autowired
RedissonClient redissonClient;
@Test
public void testRedisson() {
System.out.println(redissonClient);
}
5、结果
6、分布式锁之可重入锁
中文官方地址:https://github.com/redisson/redisson/wiki/8.-%E5%88%86%E5%B8%83%E5%BC%8F%E9%94%81%E5%92%8C%E5%90%8C%E6%AD%A5%E5%99%A8
测试:在indexController类下测试
@Autowired
RedissonClient redisson;
@ResponseBody
@GetMapping("/hello")
public String hello(){
//1.获取一把锁,只要锁的名字一样,就是同一把锁,
RLock lock = redisson.getLock("my-lock");
//2.加锁
lock.lock();//阻塞式等待。默认加的锁都是30s时间。
//1)、所得自动续期,如果业务超长,运行期间自动给锁续上新的30s。不用担心业务时间长,锁自动过期被删掉
//2)、加锁的业务只要运行完成,就不会给当前锁续期,即使不手动解锁,锁默认在30s以后自动删除。
try {
System.out.println("加锁成功,执行业务..." + Thread.currentThread().getId());
Thread.sleep(30000);
}catch (Exception e){
}finally {
//3.解锁 假设解锁代码没有运行,Redisson也不会出现死锁
System.out.println("释放锁..." + Thread.currentThread().getId());
lock.unlock();
}
return "hello";
}
}
特点:①看门狗机制,在业务运行期间,自动帮我们的锁续期;
②为了防止死锁,加的锁也是30秒,即使由于业务宕机,没有手动调用解锁,Redisson也会在30秒结束后进行自动解锁。
加锁的方式有两种:
①不指定过期时间
// 最常见的使用方法
lock.lock();
②指定过期时间
// 加锁以后10秒钟自动解锁
// 无需调用unlock方法手动解锁
lock.lock(10, TimeUnit.SECONDS);
源码解析结果分析:
//2.加锁
lock.lock();//阻塞式等待。默认加的锁都是30s时间。
//1)、所得自动续期,如果业务超长,运行期间自动给锁续上新的30s。不用担心业务时间长,锁自动过期被删掉
//2)、加锁的业务只要运行完成,就不会给当前锁续期,即使不手动解锁,锁默认在30s以后自动删除。
lock.lock(10, TimeUnit.SECONDS);//10秒自动解锁,自动解锁时间一定要大于业务的执行时间。
//问题:lock.lock(10, TimeUnit.SECONDS);在所时间到了以后,不会自动续期。
//1、如果我们传递了锁的超时时间,就发送给redis执行脚本,进行占锁,默认超时时间就是我们指定的时间
//2、如果我们未指定锁的超时时间,就使用 30 * 1000【LockWatchdogTimeout看门狗的默认时间】;
// 只要占锁成功,就会启动一个定时任务【重新给锁设置过期时间,新的过期时间就是看门狗的默认时间】,每隔10s都会自动再次续期,续成30s
// internalLockLeaseTime【看门狗时间】 /3,10s
//最佳实战:以后我们还是推荐使用这种方式
//1)、lock.lock(30, TimeUnit.SECONDS);省掉了整个续期操作。手动解锁
7、分布式锁之读写锁
测试:
indexController中新建 一个读方法,一个写方法。
//测试读写锁
//保证一定能读到最新数据,修改期间,写锁是一个排它锁(互斥锁、独享锁)。读锁是一个共享锁
//写锁没释放读就必须等待
// 读 + 读:相当于无锁,并发读,只会在redis中记录好,所有当前的读锁。他们都会同时加锁成功
// 写 + 读:等待写锁释放
// 写 + 写:阻塞方式
// 读 + 写:有读锁,写也需要等待。
//只要有写的存在,都必须等待。
@ResponseBody
@GetMapping("/write")
public String writeValue() {
RReadWriteLock lock = redisson.getReadWriteLock("rw-lock");
String s = "";
RLock rLock = lock.writeLock();
try {
//1、改数据加写锁,读数据加读锁
rLock.lock();
System.out.println("写锁加锁成功..."+Thread.currentThread().getId());
s = UUID.randomUUID().toString();
Thread.sleep(30000);
redisTemplate.opsForValue().set("writeValue", s);//保存到redis中
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
rLock.unlock();//解锁
System.out.println("写锁释放" + Thread.currentThread().getId());
}
return s;
}
@ResponseBody
@GetMapping("/read")
public String readValue() {
RReadWriteLock lock = redisson.getReadWriteLock("rw-lock");
String s = "";
//加读锁
RLock rLock = lock.readLock();
rLock.lock();
try {
System.out.println("读锁加锁成功..."+Thread.currentThread().getId());
s = redisTemplate.opsForValue().get("writeValue");
Thread.sleep(30000);
} catch (Exception e) {
e.printStackTrace();
} finally {
rLock.unlock();//解锁
System.out.println("读锁释放" + Thread.currentThread().getId());
}
return s;
}
url:http://localhost:10000/write ;http://localhost:10000/read
读 + 写:
当前在什么状态下,redis中也有记录:目前在写状态下。
写 + 读 :
读 + 读 :
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cYTqFcZf-1672324453433)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233751742-2003709766.png)]
写 + 写:
总结:只要有写的存在,都需要等待。
8、信号量
测试代码:
/**
* 车库停车,
* 3车位
* 信号量也可以用作分布式限流
*
*/
@GetMapping("/park")
@ResponseBody
public String park() throws InterruptedException {
RSemaphore park = redisson.getSemaphore("park");
// park.acquire();//获取一个信号,获取一个值,占一个车位 -> 都是阻塞式方法
boolean b = park.tryAcquire();//获取到了就占车位,获取不到就走 -> 不像 acquire 获取不到就一直阻塞,直到有。
if (b){
//执行业务
}else {
return "error";
}
return "ok=>" + b;
}
@GetMapping("/go")
@ResponseBody
public String go() throws InterruptedException {
RSemaphore park = redisson.getSemaphore("park");
park.release();//获取一个信号,获取一个值,释放一个车位 -> 都是阻塞式方法
return "ok";
}
为了方便测试,我们直接在redis中添加 park,值为3。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n65DqeCz-1672324453433)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233750418-1788858279.png)]
信号量可以用作分布式限流操作。
9、闭锁
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SVhjQ0br-1672324453434)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233749947-579025378.png)]
测试:
/**
* 闭锁测试
*
* 放假,锁门
* 1班没人了,2班没人了...
* 5个班全部走完,我们可以锁大门
*/
@GetMapping("/lockDoor")
@ResponseBody
public String lockDoor() throws InterruptedException {
RCountDownLatch door = redisson.getCountDownLatch("door");
door.trySetCount(5);
door.await();//等待闭锁都完成
return "放假了...";
}
@GetMapping("/gogogo/{id}")
@ResponseBody
public String gogogo(@PathVariable("id") Long id) throws InterruptedException {
RCountDownLatch door = redisson.getCountDownLatch("door");
door.countDown();//计数减一
return id + "班走完了";
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fVVbyfdO-1672324453434)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233749527-2131785050.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Nm5lWCQo-1672324453434)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233749156-844695264.png)]
5个班走完,才能放假。
应用:比如分布式中需要10个服务都完成,才关闭。
整合Redisson作为分布式锁等功能框架总结:
* 7.整合Redisson作为分布式锁等功能框架 * 1)、引入依赖 *
* * 2)、配置Redisson * MyRedissonConfig给容器中配置一个RedissonClient实例即可 * 3)、使用 * 参照文档做。org.redisson *redisson *3.12.0 *
1、保证一致性模式
问题:缓存里面的数据如何和数据库保持一致?
解决:两种模式:①双写模式;②失效模式。
①双写模式
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QoOTk4Rv-1672324453434)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233748828-1176832028.png)]
②失效模式
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EyWrlPlo-1672324453434)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233748296-2111119830.png)]
2、改进方法1-分布式读写锁
分布式读写锁。读数据等待写数据整个操作完成。
3、改进方法2-使用cananl
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HhDmJpwY-1672324453435)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233747535-1188305228.png)]
4、缓存数据一致性-解决方案
无论是双写模式还是失效模式,都会导致缓存的不一致问题。即多个实例同时更新会出事。怎么办?
总结:
对业务逻辑进行优化:思路:
读模式:如何读取数据?
我们遵循先从缓存中读取,没有再从数据库中查找;如果查到数据,放入缓存中,然后再进行返回,方便我们下次读取。写模式:如何保证缓存中的数据和数据库中的是一样的?
可以使用双写模式或者失效模式。
双写模式:比如我们修改了1号数据,如果1号数据同时想要在缓存中有最新的,我们可以在改完数据库后再给缓存中改一份,把以前的覆盖掉。
失效模式:比如我们改完1号数据之后,我们可以将缓存清掉,保证缓存中没有,下次查询的时候去从数据库中查询。
出现数据不一致问题,我们可以通过加锁来解决,达到缓存与数据库的最终一致。
比如之前的 getCatalogJsonFromDbWithRedisLock
这个方法 我们修改为 getCatalogJsonFromDbWithRedissonLock
方法
/**
* 缓存里面的数据如何和数据库保持一致
* 缓存数据一致性
* 1)、双写模式
* 2)、失效模式----读多写少,本系统才用这个失效模式解决缓存数据一致性问题。
* @return
*/
public Map<String, List<Catelog2Vo>> getCatalogJsonFromDbWithRedissonLock() {
//1.锁的名字。锁的粒度,越细越快。
//锁的粒度:具体缓存的是某个数据,11-号商品:product-11-lock product-12-lock product-lock(这个太大了)
RLock lock = redisson.getLock("catalogJson-lock");
lock.lock();
Map<String, List<Catelog2Vo>> dataFromDb ;
try{
dataFromDb = getDataFromDb();
}finally {
lock.unlock();
}
return dataFromDb;
}
但是这些加锁等方法有太多的相似之处,我们可以使用 一个工具类 Spring Cache来进行 缓存开发的简化。
总结:
* 7.整合Redisson作为分布式锁等功能框架 * 1)、引入依赖 *
* * 2)、配置Redisson * MyRedissonConfig给容器中配置一个RedissonClient实例即可 * 3)、使用 * 参照文档做。org.redisson *redisson *3.12.0 *
1、简介
2、基础概念
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kgyTb5X1-1672324453435)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233745687-1331135259.png)]
缓存管理器:定义规则
缓存组件:帮我们进行crud数据
各种区比如:员工缓存区、工资缓存区等分区概念,实际上都是我们定义的逻辑意义上的分区,在spring中相当于是一个标识,例如:这个数据时属于这个分区的,那个数据是属于那个分区的。
3、注解
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uBAj06vq-1672324453435)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233744753-1731605198.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eX2WMuap-1672324453435)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233743690-708494157.png)]
4、表达式语法
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-904MM2FY-1672324453435)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233741739-1156943985.png)]
spring cache官方文档:https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache
5、体验 Spring Cache 的 @Cacheable
application.properties
spring.cache.type=redis
GulimallProductApplication主启动类上加上 @EnableCaching开启基于注解的缓存
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xTggRNdb-1672324453436)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233740469-2136094089.png)]
CategoryServiceImpl
//每一个需要缓存的数据我们都来指定要放到那个名字的缓存。【缓存的分区(按照业务类型分)】
@Cacheable({"category"})//代表当前方法的结果需要缓存,如果缓存中有,方法不用调用。如果缓存中没有,会调用方法,最后将方法的结果放入缓存。
@Override
public List<CategoryEntity> getLevel1Categorys() {
long l = System.currentTimeMillis();//压力测试
List<CategoryEntity> categoryEntities = baseMapper.selectList(new QueryWrapper<CategoryEntity>().eq("parent_cid", 0));
System.out.println("消耗时间:" + (System.currentTimeMillis() - l));//测试没有索引的条件下,具体时间耗费
return categoryEntities;
}
总结:
*8.整合 Spring Cache简化缓存开发 * 1)、引入依赖 * spring-boot-starter-cache、spring-boot-starter-data-redis * 2)、写配置 * (1)、自动配置了哪些 * CacheAutoConfiguration会导入 RedisCacheConfiguration; * 自动配好了缓存管理器 RedisCacheManager * (2)、配置使用redis作为缓存 * spring.cache.type=redis * 3)、测试使用缓存 * @Cacheable: Triggers cache population.:触发将数据保存到缓存的操作 * @CacheEvict: Triggers cache eviction.:触发将数据从缓存删除的操作 * @CachePut: Updates the cache without interfering with the method execution.:不影响方法执行更新缓存 * @Caching: Regroups multiple cache operations to be applied on a method.:组合以上多个操作 * @CacheConfig: Shares some common cache-related settings at class-level.:在类级别共享缓存的相同配置 * 1)、开启缓存功能 @EnableCaching * 2)、只需使用注解就能完成缓存操作
6、自定义缓存设置
①我们先来简单体验一下。下面是默认的配置:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l6BxVFdt-1672324453436)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233739994-98942569.png)]
②简单自定义key、ttl:
key:注意写的如果是一个字符串,我们需要加上 ‘’ 号才行,因为传的是 一个 SpEL表达式,不加 **’ '**的都会认为 是动态取值
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-28yFud3W-1672324453436)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233738771-609919691.png)]
application.properties
# 时间单位默认是毫秒
spring.cache.redis.time-to-live=3600000
展示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fWsHj6z1-1672324453436)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233738475-1457473595.png)]
③总结
* 1.每一个需要缓存的数据我们都来指定要放到那个名字的缓存。【缓存的分区(按照业务类型分)】 * * 2. @Cacheable({"category"}) * 代表当前方法的结果需要缓存,如果缓存中有,方法不用调用。 * 如果缓存中没有,会调用方法,最后将方法的结果放入缓存。 *3.默认行为 * 1)、如果缓存中有,方法不调用。 * 2)、key默认自动生成: 缓存的名字::SimpleKey [](自主生成的key值) * 3)、缓存的value的值,默认使用jdk序列化机制,将序列化后的数据保存到redis * 4)、默认 TTL时间:-1 永不过期 * * 自定义: * 1)、指定生成的缓存使用的key key属性指定,接收一个SpEL:表达式 * SpEL的详细 https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache * 2)、指定缓存的数据的存活时间 配置文件中修改ttl * 3)、将数据保存为JSON格式,能够跨平台兼容
④ 按照 官方 进行设置
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YJhQQTeK-1672324453437)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233737935-665660742.png)]
设置
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-k8L358GY-1672324453437)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233736808-146953622.png)]
结果
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-98sWnZCr-1672324453437)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233736468-1607471214.png)]
自定义原理:
* 4)、原理: * CacheAutoConfiguration -> RedisCacheConfiguration -> * 自动配置了RedisCacheManager -> 初始化所有的缓存 -> 每个缓存决定使用什么配置 * -> 如果 redisCacheConfiguration有就用已有的,没有就用默认配置 * -> 想改缓存的配置,只需有给容器中放一个 RedisCacheConfiguration即可 * -> 就会应用到当前 RedisCacheManager管理的所有的缓存分区中
CacheAutoConfiguration
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QoAk4suf-1672324453437)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233736094-840740191.png)]
RedisCacheConfiguration
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2xtfdKDn-1672324453438)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233735519-1670611721.png)]
自定义 序列化机制 为 JSON :
新建 一个自定义redis缓存 的设置类:MyCacheConfig
@EnableConfigurationProperties(CacheProperties.class)
@EnableCaching
@Configuration
public class MyCacheConfig {
/**
* ①自动导入: @Autowired
* CacheProperties cacheProperties;
* ②放在redisCacheConfiguration方法参数位置:因为这个方法就是给容器中放组件的,它的方法传的所有参数都会默认从容器中确定:结果就是
* 会自动拿到 CacheProperties
*/
// @Autowired
// CacheProperties cacheProperties;
/**
* 配置文件中的东西没有用上:
*
* 1.原来和配置文件绑定的配置类是这样的:
* @ConfigurationProperties(prefix = "spring.cache")
* public class CacheProperties
*
* 2.要让他生效:
*
* @param cacheProperties
* @return
*/
@Bean
RedisCacheConfiguration redisCacheConfiguration(CacheProperties cacheProperties) {
RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
//修改序列化机制:json
config = config.serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(new StringRedisSerializer()));
config = config.serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new GenericJackson2JsonRedisSerializer()));
CacheProperties.Redis redisProperties = cacheProperties.getRedis();
//将配置文件中的所有配置都生效
if (redisProperties.getTimeToLive() != null) {
config = config.entryTtl(redisProperties.getTimeToLive());
}
if (redisProperties.getKeyPrefix() != null) {
config = config.prefixKeysWith(redisProperties.getKeyPrefix());
}
if (!redisProperties.isCacheNullValues()) {
config = config.disableCachingNullValues();
}
if (!redisProperties.isUseKeyPrefix()) {
config = config.disableKeyPrefix();
}
return config;
}
}
测试:JSON 格式序列化 并且 过期时间也设置为一个小时了。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-m7gIRck8-1672324453438)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233734378-860230688.png)]
修改配置文件 application.properties
# 给 key加一个前缀:如果指定了前缀就用我们指定的前缀,如果没有就默认使用缓存的名字作为前缀
spring.cache.redis.key-prefix=CACHE_
# 默认是 true
spring.cache.redis.use-key-prefix=true
#是否缓存空值。防止缓存穿透
spring.cache.redis.cache-null-values=true
测试空值保存 及前后缀
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fsr7wAI8-1672324453438)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233733743-718465472.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LIVXXTS5-1672324453438)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233733223-231569181.png)]
以上是我们对读模式 进行的缓存修改。
那么写模式下如何使用缓存呢?
修改 application.properties,将之前我们自定义的前缀禁用掉,并且开启使用前缀,这样以后我们就使用分区名字作为前缀
在可视化界面上也可以清晰的展示出某个分区下具体的缓存,方便以后操作。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BmjG4AP5-1672324453438)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233732868-1680747810.png)]
#spring.cache.redis.key-prefix=CACHE_
# 默认是 true
spring.cache.redis.use-key-prefix=true
当我们修改了 1级分类的数据,那么和它有关的所有缓存数据都应该删除。
updateCascade方法
/**
* 级联更新所有关联的数据
* @CacheEvict:失效模式
* 1.同时进行多种缓存操作 @Caching
* 2.指定删除某个分区下的所有数据 @CacheEvict(value = "category",allEntries = true)
* 3.存储同一类型的数据,都可以指定成同一个分区。
* @param category
*/
// @CacheEvict(value = "category",key = "'getLevel1Categorys'")
// @Caching(evict = {
// @CacheEvict(value = "category",key = "'getLevel1Categorys'"),
// @CacheEvict(value = "category",key = "'getCatalogJson'")
// })
@CacheEvict(value = "category",allEntries = true)
@Transactional
@Override
public void updateCascade(CategoryEntity category) {
this.updateById(category);
categoryBrandRelationService.updateCategory(category.getCatId(), category.getName());
//同时修改缓存中的数据
// redis.del("catalogJSON");等待下次主动查询进行更新
}
将之前的 getCatalogJson 改名,
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Kja2x6fk-1672324453439)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233732496-1152058494.png)]
getCatalogJson方法还是照样执行业务逻辑,然后放入缓存中。将 getDataFromDb的部分代码复制过来进行修改。
@Cacheable(value = "category",key = "#root.methodName")
@Override
public Map<String, List<Catelog2Vo>> getCatalogJson() {
System.out.println("查询了数据库.....");
/**
* 1.将数据库的多次查询变为一次,之前是嵌套查询,导致和数据库做很多次交互
* 后续查询操作从这次查询结果中取结果
*/
List<CategoryEntity> selectList = baseMapper.selectList(null);//不传任何条件,就代表查询所有。
//1.查出所有1级分类
List<CategoryEntity> level1Categorys = getParent_cid(selectList, 0L);//1级分类的 父id 是 0
//2.封装数据
Map<String, List<Catelog2Vo>> parent_cid = level1Categorys.stream().collect(Collectors.toMap(k -> k.getCatId().toString(), v -> {
//1.每一个的一级分类,查到这个一级分类的二级分类
List<CategoryEntity> categoryEntities = getParent_cid(selectList, v.getCatId());//将正在遍历的元素v的catId作为 parent_cid的值,就可以找出它的子分类
//2.封装上面的结果
List<Catelog2Vo> catelog2Vos = null;
if (categoryEntities != null) {
catelog2Vos = categoryEntities.stream().map(l2 -> {
Catelog2Vo catelog2Vo = new Catelog2Vo(v.getCatId().toString(), null, l2.getCatId().toString(), l2.getName());
//1.找到当前二级分类的三级分类,封装成 vo
List<CategoryEntity> level3Catelog = getParent_cid(selectList, l2.getCatId());
// 三级分类有数据的情况下
if (level3Catelog != null) {
List<Catelog2Vo.Catelog3Vo> collect = level3Catelog.stream().map(l3 -> {
//2.封装成指定格式
Catelog2Vo.Catelog3Vo catelog3Vo = new Catelog2Vo.Catelog3Vo(l2.getCatId().toString(), l3.getCatId().toString(), l3.getName());
return catelog3Vo;
}).collect(Collectors.toList());
catelog2Vo.setCatalog3List(collect);
}
return catelog2Vo;
}).collect(Collectors.toList());
}
return catelog2Vos;
}));
return parent_cid;
}
测试:
访问 gulimall.com,将首页数据缓存
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QgnO0EYB-1672324453439)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233732106-1008598323.png)]
当我们修改 分类数据,会自动将缓存清理掉(分类缓存 :getCatalogJson和1级分类缓存getLevel1Categorys)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-baSOKS4w-1672324453439)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233731373-446645024.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zYC63y1d-1672324453439)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233730952-958579105.png)]
Spring Cache的使用总结:
1.每一个需要缓存的数据我们都来指定要放到那个名字的缓存。【缓存的分区(按照业务类型分)】 * * 2. @Cacheable({"category"}) * 代表当前方法的结果需要缓存,如果缓存中有,方法不用调用。 * 如果缓存中没有,会调用方法,最后将方法的结果放入缓存。 *3.默认行为 * 1)、如果缓存中有,方法不调用。 * 2)、key默认自动生成: 缓存的名字::SimpleKey [](自主生成的key值) * 3)、缓存的value的值,默认使用jdk序列化机制,将序列化后的数据保存到redis * 4)、默认 TTL时间:-1 永不过期 * * 自定义: * 1)、指定生成的缓存使用的key key属性指定,接收一个SpEL:表达式 :写的如果是一个字符串,我们需要加上 '' 号才行,因为传的是 一个 SpEL表达式 * 不加 ''的都会认为 是动态取值 * SpEL的详细 https://docs.spring.io/spring-framework/docs/current/reference/html/integration.html#cache * 2)、指定缓存的数据的存活时间 配置文件中修改ttl * 3)、将数据保存为JSON格式,能够跨平台兼容: * 自定义RedisCacheConfiguration即可 *4.Spring-cache的不足: * 1)、读模式: * 缓存穿透:查询一个null数据。解决:缓存空数据:spring.cache.redis.cache-null-values=true * 缓存击穿:大量并发进来同时查询一个正好过期的数据。解决:加锁;默认是无锁的;sync = true(加锁,解决击穿) * 缓存雪崩:大量的key同时过期过期。解决:加随机时间。加上过期时间:spring.cache.redis.time-to-live=3600000 * 2)、写模式:(缓存与数据库一致) * 1)、读写加锁。适用于读多写少 * 2)、引入Canal,感知到MySQL的更新去更新数据库 * 3)、读多写多。直接去数据库查询就行。 *总结:常规数据(读多写少,即时性,一致性要求不高的数据):完全可以使用Spring-Cache * 特殊数据:特殊设计 * * 原理: * CacheManager(RedisCacheManager)->Cache(RedisCache)->Cache负责缓存的读写
整合 Spring Cache简化缓存开发的总结:
*8.整合 Spring Cache简化缓存开发 * 1)、引入依赖 * spring-boot-starter-cache、spring-boot-starter-data-redis * 2)、写配置 * (1)、自动配置了哪些 * CacheAutoConfiguration会导入 RedisCacheConfiguration; * 自动配好了缓存管理器 RedisCacheManager * (2)、配置使用redis作为缓存 * spring.cache.type=redis * 3)、测试使用缓存 * @Cacheable: Triggers cache population.:触发将数据保存到缓存的操作 * @CacheEvict: Triggers cache eviction.:触发将数据从缓存删除的操作 * @CachePut: Updates the cache without interfering with the method execution.:不影响方法执行更新缓存 * @Caching: Regroups multiple cache operations to be applied on a method.:组合以上多个操作 * @CacheConfig: Shares some common cache-related settings at class-level.:在类级别共享缓存的相同配置 * 1)、开启缓存功能 @EnableCaching * 2)、只需使用注解就能完成缓存操作 * * 4)、原理: * CacheAutoConfiguration -> RedisCacheConfiguration -> * 自动配置了RedisCacheManager -> 初始化所有的缓存 -> 每个缓存决定使用什么配置 * -> 如果 redisCacheConfiguration有就用已有的,没有就用默认配置 * -> 想改缓存的配置,只需有给容器中放一个 RedisCacheConfiguration即可 * -> 就会应用到当前 RedisCacheManager管理的所有的缓存分区中
1)、继承Thread
2)、实现Runnable 接口
3)、实现Callable 接口+ FutureTask (可以拿到返回结果,可以处理异常)
4)、线程池
方式1 和方式2:主进程无法获取线程的运算结果。不适合当前场景
方式3:主进程可以获取线程的运算结果,但是不利于控制服务器中的线程资源。可以导致
服务器资源耗尽。
方式4:通过如下两种方式初始化线程池
Executors.newFiexedThreadPool(3);
//或者
new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit unit,
workQueue, threadFactory, handler);
通过线程池性能稳定,也可以获取执行结果,并捕获异常。但是,在业务复杂情况下,一
个异步调用可能会依赖于另一个异步调用的执行结果。
public static class Thread01 extends Thread{
@Override
public void run() {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
}
}
public static class Runnable01 implements Runnable{
@Override
public void run() {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
}
}
public static class Callable01 implements Callable<Integer>{
@Override
public Integer call() throws Exception {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
return i;
}
}
/** * 1)、继承Thread * Thread01 thread = new Thread01(); * thread.start();//启动线程 * 2)、实现Runnable 接口 * Runnable01 runnable01 = new Runnable01(); * new Thread(runnable01).start(); * 3)、实现Callable 接口+ FutureTask (可以拿到返回结果,可以处理异常) * FutureTask
futureTask = new FutureTask<>(new Callable01()); * new Thread(futureTask).start(); * //阻塞等待整个线程执行完成,获取返回结果 * Integer integer = futureTask.get(); * 4)、线程池【ExecutorService】 * 给线程池直接提交任务。 * service.execute(new Runnable01()); * 1、创建: * 1)、Executors * 2)、new ThreadPoolExecutor * * Future:可以获取到异步结果 * *区别: * 1、2不能得到返回值,3可以获取返回值。 * 1、2、3都不能控制资源 * 4可以控制资源,性能稳定。 */ //我们以后在任务代码里面,以上三种启动线程的方式都不用。【将所有的多线程异步任务都交给线程池执行】 // new Thread(()-> System.out.println("hello")).start(); //当前系统中池只有一两个,每个异步任务,提交给线程池让他自己去执行就行
- @param corePoolSize the number of threads to keep in the pool, even if they are idle, unless {@code allowCoreThreadTimeOut} is set
池中一直保持的线程的数量,即使线程空闲。除非设置了allowCoreThreadTimeOut- @param maximumPoolSize the maximum number of threads to allow in the pool
池中允许的最大的线程数- @param keepAliveTime when the number of threads is greater than the core, this is the maximum time that excess idle threads will wait for new tasks before terminating.
当线程数大于核心线程数的时候,线程在最大多长时间没有接到新任务就会终止释放,
最终线程池维持在corePoolSize 大小- @param unit the time unit for the {@code keepAliveTime} argument
时间单位- @param workQueue the queue to use for holding tasks before they are executed. This queue will hold only the {@code Runnable} tasks submitted by the {@code execute} method.
阻塞队列,用来存储等待执行的任务,如果当前对线程的需求超过了corePoolSize
大小,就会放在这里等待空闲线程执行。- @param threadFactory the factory to use when the executor creates a new thread
创建线程的工厂,比如指定线程名等- @param handler the handler to use when execution is blocked because the thread bounds and queue capacities are reached
拒绝策略,如果线程满了,线程池就会使用拒绝策略。
// 最原始的方式
ThreadPoolExecutor executor = new ThreadPoolExecutor(5,
200,
10,
TimeUnit.SECONDS,
new LinkedBlockingDeque<>(100000),
Executors.defaultThreadFactory(),
new ThreadPoolExecutor.AbortPolicy());
运行流程:
1、线程池创建,准备好core 数量的核心线程,准备接受任务
2、新的任务进来,用core 准备好的空闲线程执行。
(1) 、core 满了,就将再进来的任务放入阻塞队列中。空闲的core 就会自己去阻塞队
列获取任务执行
(2) 、阻塞队列满了,就直接开新线程执行,最大只能开到max 指定的数量
(3) 、max 都执行好了。Max-core 数量空闲的线程会在keepAliveTime 指定的时间后自
动销毁。最终保持到core 大小
(4) 、如果线程数开到了max 的数量,还有新任务进来,就会使用reject 指定的拒绝策
略进行处理
3、所有的线程创建都是由指定的factory 创建的。
面试:
一个线程池core 7; max 20 ,queue:50,100 并发进来怎么分配的;
先有7 个能直接得到执行,接下来50 个进入队列排队,在多开13 个继续执行。现在70 个
被安排上了。剩下30 个默认拒绝策略。
/** * 七大参数 * corePoolSize:[5]核心线程数【一直存在除非(allowCoreThreadTimeOut)】;线程池,创建好以后就准备就绪的线程数量,就等待来接收异步任务去执行。 * 5个 Thread thread = new Thread(); thread.start(); * * maximumPoolSize:[200] 最大线程数量;控制资源 * keepAliveTime:存活时间。如果当前的线程数量大于 core数量。 * 释放空闲的线程(maximumPoolSize - corePoolSize)。只要线程空闲大于指定的keepAliveTime; *unit:时间单位 * BlockingQueue
workQueue:阻塞队列。如果任务有很多,就会将目前多的任务放在队列里面。 * 只要有线程空闲,就回去队列里面取出新的任务继续执行。 * threadFactory:线程的创建工厂。 * RejectedExecutionHandler handler:如果队列满了,按照我们指定的拒绝策略拒绝执行任务。 * * * * 工作顺序: * 1)、线程池创建,准备好core数量的核心线程,准备接收任务 * 1.1、core满了,就将再进来的任务放入阻塞队列中。空闲的core就会自己去阻塞队列获取任务执行 * 1.2、阻塞队列满了,就直接开新线程执行,最大只能开到马西西指定的数量 * 1.3、max满了就用RejectedExecutionHandler拒绝任务 * 1.4、max都执行完成,有很多空闲,在指定的时间keepAliveTime以后,释放max-core这些线程 * * new LinkedBlockingDeque<>():默认是Integer的最大值。内存不够。 *面试题1:一个线程池core 7; max 20 ,queue:50,100 并发进来怎么分配的; * 7个会立即执行,50个会进入阻塞队列,因为最大线程数量是20,所以再开13个进行执行。剩下的30个就使用拒绝策略。 * 如果不想抛弃还要执行:CallerRunsPolicy 同步方式 * * */
//快速创建线程池
Executors.newCachedThreadPool(); //core是0 所有都可回收
Executors.newFixedThreadPool(10);//固定大小 core=max 都不可以回收
Executors.newScheduledThreadPool(10); //定时任务的线程池
Executors.newSingleThreadExecutor(); //单线程的线程池,后台从队列里面获取任务 挨个执行
业务场景:
查询商品详情页的逻辑比较复杂,有些数据还需要远程调用,必然需要花费更多的时间。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-B4scEbWP-1672324453439)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233730589-2137433885.png)]
假如商品详情页的每个查询,需要如下标注的时间才能完成;那么,用户需要5.5s 后才能看到商品详情页的内容。很显然是不能接受的。
如果有多个线程同时完成这6 步操作,也许只需要1.5s 即可完成响应。
Future 是Java 5 添加的类,用来描述一个异步计算的结果。你可以使用isDone
方法检查计算是否完成,或者使用get
阻塞住调用线程,直到计算完成返回结果,你也可以使用cancel
方法停止任务的执行。
虽然Future
以及相关使用方法提供了异步执行任务的能力,但是对于结果的获取却是很不方便,只能通过阻塞或者轮询的方式得到任务的结果。阻塞的方式显然和我们的异步编程的初衷相违背,轮询的方式又会耗费无谓的CPU 资源,而且也不能及时地得到计算结果,为什么不能用观察者设计模式当计算结果完成及时通知监听者呢?
很多语言,比如Node.js,采用回调的方式实现异步编程。Java 的一些框架,比如Netty,自己扩展了Java 的Future
接口,提供了addListener
等多个扩展方法;Google guava 也提供了通用的扩展Future;Scala 也提供了简单易用且功能强大的Future/Promise 异步编程模式。
作为正统的Java 类库,是不是应该做点什么,加强一下自身库的功能呢?
在Java 8 中, 新增加了一个包含50 个方法左右的类: CompletableFuture,提供了非常强大的Future 的扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力,可以通过回调的方式处理计算结果,并且提供了转换和组合CompletableFuture 的方法。
CompletableFuture 类实现了Future 接口,所以你还是可以像以前一样通过get
方法阻塞或者轮询的方式获得结果,但是这种方式不推荐使用。
CompletableFuture 和FutureTask 同属于Future 接口的实现类,都可以获取线程的执行结果。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wK3l4Nk6-1672324453440)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233729985-1261212856.png)]
CompletableFuture 提供了四个静态方法来创建一个异步操作。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8cHJ9uGH-1672324453440)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233729442-2086193148.png)]
1、runXxxx 都是没有返回结果的,supplyXxx 都是可以获取返回结果的
2、可以传入自定义的线程池,否则就用默认的线程池;
public static ExecutorService executor = Executors.newFixedThreadPool(10);
public static void main(String[] args) throws ExecutionException, InterruptedException {
System.out.println("main....start....");
// CompletableFuture future = CompletableFuture.runAsync(() -> {
// System.out.println("当前线程:" + Thread.currentThread().getId());
// int i = 10 / 2;
// System.out.println("运行结果:" + i);
// }, executor);
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
return i;
}, executor);
Integer integer = future.get();
System.out.println("main....end...." + integer);
}
以下测试都需要使用到自定义的线程池:Executors.newFixedThreadPool(10);
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tDjRNfMu-1672324453440)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233728557-1927898004.png)]
whenComplete 可以处理正常和异常的计算结果,exceptionally 处理异常情况。
whenComplete 和whenCompleteAsync 的区别:
whenComplete:是执行当前任务的线程执行继续执行whenComplete 的任务。
whenCompleteAsync:是执行把whenCompleteAsync 这个任务继续提交给线程池来进行执行。
方法不以Async 结尾,意味着Action 使用相同的线程执行,而Async 可能会使用其他线程执行(如果是使用相同的线程池,也可能会被同一个线程选中执行)。
public static void main(String[] args) throws ExecutionException, InterruptedException {
System.out.println("main....start....");
// CompletableFuture future = CompletableFuture.runAsync(() -> {
// System.out.println("当前线程:" + Thread.currentThread().getId());
// int i = 10 / 2;
// System.out.println("运行结果:" + i);
// }, executor);
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 0;
System.out.println("运行结果:" + i);
return i;
}, executor).whenComplete((res,exception)->{
//虽然能得到异常信息,但是没法修改返回数据。
System.out.println("异步任务完成了。。。结果是:" + res + ";异常是:" + exception);
}).exceptionally(throwable -> {
//可以感知异常,同时返回默认值
return 10;
});
Integer integer = future.get();
System.out.println("main....end...." + integer);
}
lambda表达式中的参数解释:
res:返回结果
exception:异常
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZgF1baQ0-1672324453440)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233727623-1692287183.png)]
和complete 一样,可对结果做最后的处理(可处理异常),可改变返回值。
/**
* 方法执行完成后的处理
*/
CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
return i;
}, executor).handle((res,thr)->{
if (res != null){
return res * 2;
}
if (thr != null){
return 0;
}
return 0;
});
// R apply(T t, U u)
Integer integer = future.get();
System.out.println("main....end...." + integer);
Async:异步。重新开线程进行任务
sync:同步。公用一个线程进行任务。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4X6awMeG-1672324453441)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233726604-1801091699.png)]
thenApply 方法:当一个线程依赖另一个线程时,获取上一个任务返回的结果,并返回当前任务的返回值。
thenAccept 方法:消费处理结果。接收任务的处理结果,并消费处理,无返回结果。
thenRun 方法:只要上面的任务执行完成,就开始执行thenRun,只是处理完任务后,执行thenRun 的后续操作。
带有Async 默认是异步执行的。同之前。
以上都要前置任务成功完成。
Function super T,? extends U>
T:上一个任务返回结果的类型
U:当前任务的返回值类型
thenrun
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6d2zcBjR-1672324453441)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233725618-816884845.png)]
thenAcceptAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bt9QwoYD-1672324453441)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233725304-1610402200.png)]
thenApplyAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YkgLIq7c-1672324453441)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233725009-1546876192.png)]
/**
* 线程串行化
* 1)、thenRun:不能获取到上一步的执行结果,无返回值
* .thenRunAsync(()->{
* System.out.println("任务2启动了....");
* },executor);
* 2)、thenAcceptAsync能接受上一步结果,但是无返回值
* .thenAcceptAsync(res ->{
* System.out.println("线程2启动了..." + res);
* },executor);
* // void accept(T t);
* 3)、thenApplyAsync:能接受上一步结果,有返回值
* .thenApplyAsync(res -> {
* System.out.println("线程2启动了..." + res);
* return "Hello" + res;
* }, executor);
* // R apply(T t);
*/
CompletableFuture<String> future = CompletableFuture.supplyAsync(() -> {
System.out.println("当前线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("运行结果:" + i);
return i;
}, executor).thenApplyAsync(res -> {
System.out.println("线程2启动了..." + res);
return "Hello" + res;
}, executor);
// R apply(T t);
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JEceMRC9-1672324453441)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233724601-1501338513.png)]
两个任务必须都完成,触发该任务。
thenCombine:组合两个future,获取两个future 的返回结果,并返回当前任务的返回值
thenAcceptBoth:组合两个future,获取两个future 任务的返回结果,然后处理任务,没有
返回值。
runAfterBoth:组合两个future,不需要获取future 的结果,只需两个future 处理完任务后,
处理该任务。
runAfterBothAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f7mHu540-1672324453442)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233723401-1368961555.png)]
thenAcceptBothAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-moK50QaE-1672324453442)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233723063-1140090243.png)]
thenCombineAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Q8qvLpwW-1672324453442)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233722718-1166595266.png)]
/**
* 两个都完成
*/
CompletableFuture<Object> future01 = CompletableFuture.supplyAsync(() -> {
System.out.println("任务1线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("任务1结束:" + i);
return i;
}, executor);
CompletableFuture<Object> future02 = CompletableFuture.supplyAsync(() -> {
System.out.println("任务1线程:" + Thread.currentThread().getId());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("任务2结束:");
return "Hello";
}, executor);
// 不能感知到前面两个的结果
future01.runAfterBothAsync(future02,()->{
System.out.println("任务3开始...");
},executor);
// 能接受前面两个的返回值
// void accept(T t, U u);
future01.thenAcceptBothAsync(future02,(f1,f2)->{
System.out.println("任务3开始...之前的结果:" + f1 + ">-----" + f2);
},executor);
// 能接受前面两个的返回值,并且自己也能处理返回值
// R apply(T t, U u);
CompletableFuture<String> future = future01.thenCombineAsync(future02, (f1, f2) -> {
return f1 + ":" + f2 + "- > Haha";
}, executor);
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AX4Ke8JR-1672324453442)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233722299-1422968873.png)]
当两个任务中,任意一个future 任务完成的时候,执行任务。
applyToEither:两个任务有一个执行完成,获取它的返回值,处理任务并有新的返回值。
acceptEither:两个任务有一个执行完成,获取它的返回值,处理任务,没有新的返回值。
runAfterEither:两个任务有一个执行完成,不需要获取future 的结果,处理任务,也没有返
回值。
runAfterEitherAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MeAsDKmr-1672324453442)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233721275-1769500368.png)]
acceptEitherAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UdygWihX-1672324453443)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233720895-1845655180.png)]
applyToEitherAsync
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-IgQsTSOi-1672324453443)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233720555-776788939.png)]
CompletableFuture<Object> future01 = CompletableFuture.supplyAsync(() -> {
System.out.println("任务1线程:" + Thread.currentThread().getId());
int i = 10 / 2;
System.out.println("任务1结束:" + i);
return i;
}, executor);
CompletableFuture<Object> future02 = CompletableFuture.supplyAsync(() -> {
System.out.println("任务1线程:" + Thread.currentThread().getId());
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("任务2结束:");
return "Hello";
}, executor);
/**
* 两个任务,只要有一个完成,我们就执行任务3
* runAfterEitherAsync:不感知结果,自己没有返回值
* acceptEitherAsync:感知结果,自己没有返回值
* acceptEitherAsync:感知结果,自己有返回值
*/
future01.runAfterEitherAsync(future02,()->{
System.out.println("任务3开始...之前的结果:");
},executor);
// void accept(T t);
future01.acceptEitherAsync(future02,(res)->{
System.out.println("任务3开始...之前的结果:" + res);
},executor);
// R apply(T t);
CompletableFuture<String> future = future01.applyToEitherAsync(future02, res -> {
System.out.println("任务3开始...之前的结果:" + res);
return res.toString() + "->哈哈";
}, executor);
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pvMropbg-1672324453443)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233720142-816759628.png)]
allOf:等待所有任务完成
anyOf:只要有一个任务完成
allOf
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sEE6CRjA-1672324453443)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233719673-1255810233.png)]
anyOf
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qN6oZ3EK-1672324453444)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233719354-1623525353.png)]
/**
* 多任务完成
*/
CompletableFuture<String> futureImg = CompletableFuture.supplyAsync(() -> {
System.out.println("查询商品的图片信息");
return "hello.jpg";
}, executor);
CompletableFuture<String> futureAttr = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
System.out.println("查询商品的属性");
} catch (InterruptedException e) {
e.printStackTrace();
}
return "黑色+256G";
}, executor);
CompletableFuture<String> futureDesc = CompletableFuture.supplyAsync(() -> {
System.out.println("查询商品介绍");
return "华为";
}, executor);
// CompletableFuture allOf = CompletableFuture.allOf(futureImg, futureAttr, futureDesc);
// allOf.get();//等待所有结果完成
// System.out.println("main....end...."+futureImg.get()+"->"+futureAttr.get()+"->"+futureDesc.get());
CompletableFuture<Object> anyOf = CompletableFuture.anyOf(futureImg, futureAttr, futureDesc);
// allOf.get();//等待所有结果完成
System.out.println("main....end...."+anyOf.get());
本地事务会失效不回滚的两种情况:
①锁库存假失败,由于网络原因导致连接超时,但是锁库存已经操作成功。此时,订单数据回滚而锁库存数据没有回滚。
②其它远程服务调用失败,订单数据回滚,但是已经执行成功的远程服务调用的数据库数据无法回滚
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xNiXiS1C-1672324453444)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233718960-1966346728.png)]
数据库事务的几个特性:原子性(Atomicity )、一致性( Consistency )、隔离性或独立性( Isolation)
和持久性(Durabilily),简称就是ACID;
在以往的单体应用中,我们多个业务操作使用同一条连接操作不同的数据表,一旦有异常,
我们可以很容易的整体回滚;
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-erSqQWDx-1672324453444)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233717801-1272888456.png)]
Business:我们具体的业务代码
Storage:库存业务代码;扣库存
Order:订单业务代码;保存订单
Account:账号业务代码;减账户余额
比如买东西业务,扣库存,下订单,账户扣款,是一个整体;必须同时成功或者失败。
一个事务开始,代表以下的所有操作都在同一个连接里面;
1、PROPAGATION_REQUIRED:如果当前没有事务,就创建一个新事务,如果当前存在事务,
就加入该事务,该设置是最常用的设置。
2、PROPAGATION_SUPPORTS:支持当前事务,如果当前存在事务,就加入该事务,如果当
前不存在事务,就以非事务执行。
3、PROPAGATION_MANDATORY:支持当前事务,如果当前存在事务,就加入该事务,如果
当前不存在事务,就抛出异常。
4、PROPAGATION_REQUIRES_NEW:创建新事务,无论当前存不存在事务,都创建新事务。
5、PROPAGATION_NOT_SUPPORTED:以非事务方式执行操作,如果当前存在事务,就把当
前事务挂起。
6、PROPAGATION_NEVER:以非事务方式执行,如果当前存在事务,则抛出异常。
7、PROPAGATION_NESTED:如果当前存在事务,则在嵌套事务内执行。如果当前没有事务,
则执行与PROPAGATION_REQUIRED 类似的操作。
1、事务的自动配置
TransactionAutoConfiguration
2、事务的坑
在同一个类里面,编写两个方法,内部调用的时候,会导致事务设置失效。原因是没有用到
代理对象的缘故。
解决:
0)、导入spring-boot-starter-aop
1)、@EnableTransactionManagement(proxyTargetClass = true)
2)、@EnableAspectJAutoProxy(exposeProxy=true)
3)、AopContext.currentProxy() 调用方法
案例一:
方法B()和方法A()共用一个事务,方法C则创建一个新事务,若出现异常则方法B()和方法A()会回滚,方法C()则不会
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-L6sWXaDG-1672324453444)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233716954-1186756428.png)]
案例二:
方法B()设置了事务的超时时间,但是方法B()和方法A()共用方法A()的事务,因此,以方法A设置的超时时间为准。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3s38dK5Q-1672324453445)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233716310-99633122.png)]
SpringBoot事务的坑
事务失效的原因:绕过了代理
①未启用事务
@EnableTransactionManagement 注解用来启用spring事务自动管理事务的功能,这个注解千万不要忘记写了。
② 方法不是public类型的。
@Transactional 可以用在类上、接口上、public方法上,如果将@Trasactional用在了非public方法上,事务将无效。
③数据源未配置事务管理器
@Bean
public PlatformTransactionManager transactionManager(DataSource dataSource) {
return new DataSourceTransactionManager(dataSource);
}
④自身调用问题
spring是通过aop的方式,对需要spring管理事务的bean生成了代理对象,然后通过代理对象拦截了目标方法的执行,在方法前后添加了事务的功能,所以必须通过代理对象调用目标方法的时候,事务才会起效。
看下面代码,大家思考一个问题:当外部直接调用m1的时候,m2方法的事务会生效么?
@Component
public class UserService {
public void m1(){
this.m2();
}
@Transactional
public void m2(){
//执行db操作
}
}
显然不会生效,因为m1中通过this的方式调用了m2方法,而this并不是代理对象,this.m2()不会被事务拦截器,所以事务是无效的,如果外部直接调用通过UserService这个bean来调用m2方法,事务是有效的,上面代码可以做一下调整,如下,@1在UserService中注入了自己,此时会产生更为严重的问题:循环依赖
@Component
public class UserService {
@Autowired //@1
private UserService userService;
public void m1() {
this.userService.m2();
}
@Transactional
public void m2() {
//执行db操作
}
}
⑤ 异常类型错误
spring事务回滚的机制:对业务方法进行try catch,当捕获到有指定的异常时,spring自动对事务进行回滚,那么问题来了,哪些异常spring会回滚事务呢?
并不是任何异常情况下,spring都会回滚事务,默认情况下,RuntimeException和Error的情况下,spring事务才会回滚。
也可以自定义回滚的异常类型(需继承RuntimeException):
@Transactional(rollbackFor = {异常类型列表})
⑥异常被吞了
当业务方法抛出异常,spring感知到异常的时候,才会做事务回滚的操作,若方法内部将异常给吞了,那么事务无法感知到异常了,事务就不会回滚了。
如下代码,事务操作2发生了异常,但是被捕获了,此时事务并不会被回滚
@Transactional
public void m1(){
事务操作1
try{
事务操作2,内部抛出了异常
}catch(Exception e){
}
}
⑦业务和spring事务代码必须在一个线程中
spring事务实现中使用了ThreadLocal,ThreadLocal大家应该知道吧,可以实现同一个线程中数据共享,必须是同一个线程的时候,数据才可以共享,这就要求业务代码必须和spring事务的源码执行过程必须在一个线程中,才会受spring事务的控制,比如下面代码,方法内部的子线程内部执行的事务操作将不受m1方法上spring事务的控制,这个大家一定要注意
@Transactional
public void m1() {
new Thread() {
一系列事务操作
}.start();
}
解决方案:
本地事务失效的原因:同一个对象内事务方法互相调用默认失效,原因绕过了代理对象,事务使用代理对象来控制
解决:使用代理对象来调用事务方法
方法B()和方法C()的事务属性设置会失效,原因是绕过了代理,SpringBoot的事务是通过AOP代理实现的
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-11s5yfHo-1672324453445)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233715409-1913624115.png)]
解决事务失效的步骤:
1.引入aspectj依赖
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-aopartifactId>
dependency>
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-n7qbJXl5-1672324453445)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233714908-1697763892.png)]
aop引入了 aspectj依赖
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nrY9qmLg-1672324453445)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233714524-167412189.png)]
2. 开启aspectj动态代理功能,以后所有的动态代理都是aspectj创建的。通过设置exposeProxy暴露代理对象
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KFEhxQ2W-1672324453445)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233714150-472404447.png)]
3. 本类互调用对象
@Transactional(timeout = 30)
public void A(){
// B();
// C();
OrderServiceImpl service =(OrderServiceImpl)AopContext.currentProxy();
service.B();
service.C();
int i = 10/0;
}
@Transactional(propagation = Propagation.REQUIRED,timeout = 20)
public void B(){
}
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void C(){
}
*本地事务失效问题 * 同一个对象内事务方法互调默认失效,原因:绕过了代理对象,事务使用代理对象来控制的 * 解决:使用代理对象来调用事务方法 * 1)、引入spring-boot-starter-aop:引入了aspectj * 2)、@EnableAspectJAutoProxy(exposeProxy = true):开启 aspectj 动态代理功能。以后所有的动态代理都是aspectj创建的(即使没有接口也会创建代理对象) * exposeProxy = true:对外暴露代理对象 * 3)、本类互调用对象 * OrderServiceImpl orderService = (OrderServiceImpl) AopContext.currentProxy(); * orderService.b(); * orderService.c(); *
以下是参考网友的:
ps:可以参考:
分布式事务:
订单服务下订单---------
库存服务锁库存---------->分布式事务
用户服务扣减积分-------/
事务保证:
1、订单服务异常,库存锁定不运行,全部回滚,撤销操作
2、库存服务事务自治,锁定失败全部回滚,订单感受到,继续回滚
3、库存服务锁定成功了,但是网络原因返回数据途中问题?
4、库存服务锁定成功了,库存服务下面的逻辑发生故障,订单回滚了,怎么处理?
利用消息队列实现最终一致
库存服务锁定成功后发给消息队列消息(当前库存工作单),过段时间自动解锁,解锁时先查询订单的支付状态。解锁成功修改库存工作单详情项状态为已解锁
事务传播问题中,传播后事务设置还是原来的,如果不想用原来设置,必须new事务
注意同类中调用的话,被调用事务会失效,原因在于aop。事务基于代理,同对象的方法动态代理都是同一个。解决方案是使用代理对象调用。引用aop-starter后,使用aspectJ,开启AspectJ动态代理,原来默认使用的是jdk动态代理。
使用@EnableAspectJAutoProxy(exposeProxy=true)后,就取代了jdk动态代理。它没有接口也可以创建动态代理。设置true是为了对外暴露代理对象。
AopContext.currentProxy()然后强转,就是当前代理对象。
public interface AService {
public void a();
public void b();
}
@Service()
public class AServiceImpl1 implements AService{
@Transactional(propagation = Propagation.REQUIRED)
public void a() {
this.b();
}
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void b() {
}
}
此处的this指向目标对象,因此调用this.b()将不会执行b事务切面,即不会执行事务增强,
因此b方法的事务定义“@Transactional(propagation = Propagation.REQUIRES_NEW)”将不会实施,
即结果是b和a方法的事务定义是一样的(我们可以看到事务切面只对a方法进行了事务增强,没有对b方法进行增强)
Q1:b中的事务会不会生效?
A1:不会,a的事务会生效,b中不会有事务,因为a中调用b属于内部调用,没有通过代理,所以不会有事务产生。
Q2:如果想要b中有事务存在,要如何做?
A2:<aop:aspectj-autoproxy expose-proxy=“true”> ,设置expose-proxy属性为true,将代理暴露出来,使用AopContext.currentProxy()获取当前代理,将this.b()改为((UserService)AopContext.currentProxy()).b()
解决方案:
public void a() {
((AService) AopContext.currentProxy()).b();//即调用AOP代理对象的b方法即可执行事务切面进行事务增强
}
分布式系统经常出现的异常
机器宕机、网络异常、消息丢失、消息乱序、数据错误、不可靠的TCP、存储数据丢失…
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hGvi6qUM-1672324453446)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233713564-1161681740.png)]
分布式事务是企业集成中的一个技术难点,也是每一个分布式系统架构中都会涉及到的一个
东西,特别是在微服务架构中,几乎可以说是无法避免。
1、CAP 定理
CAP 原则又称CAP 定理,指的是在一个分布式系统中
一致性(Consistency):
在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访
问同一份最新的数据副本)
可用性(Availability)
在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(对数据
更新具备高可用性)
分区容错性(Partition tolerance)
大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。
分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务
器放在美国,这就是两个区,它们之间可能无法通信。
CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HLC3mN4p-1672324453446)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233712790-1902991357.png)]
一般来说,分区容错无法避免,因此可以认为CAP 的P 总是成立。CAP 定理告诉我们,
剩下的C 和A 无法同时做到。
分布式系统中实现一致性的raft 算法、paxos
动画详解:
选举与同步理论
raft是一个实现分布式一致性的协议
结点的状态:
选举leader:
raft有两个超时时间控制领导选举:
- 选举超时:从follower到candidate的时间,150ms-300ms(自旋时间),这个时间段内没收到leader的心跳就变为候选者。
- 自旋时间结束后变成candidate,开始一轮新的选举(老师上课举的例子是)
- 投出去票后重新计时自旋
- leader就发送追加日志给follower,follower就正常
- 消息发送的,心跳时间:如10ms,leader收到投票后,下一次心跳时就带上消息,follower收到消息后重置选举时间
- leader宕机,follower收不到心跳,开始新的选举
写数据:
如果有的结点消息滞后了:
5台机器因为局域网隔离又分为3、2生成两个leader怎么办:
- 对于1,2结点那个leader,更新log后收不到大多数的ack(得超过1个ack),所以改log不成功,一直保存不成功
- 对于345结点的leader:收到消息后更新log并且收到ack过半且超过1个,成功保存。
- 此时网络又通了,以更高轮选举的leader为主,退位一个leader。那1,2结点日志都回滚,同步新leader的log。这样就都一致性了
另外注意:集群一般都是单数,因为有过半机制。比如原来集群6个机器,分为2半后,各3个,选leader时谁都拿不到6/2+1=4个投票,所以都没有leader
更多动画(可以自己选择宕机情况)raft.github.io
但一般都是保证AP,舍弃C
自我总结Raft算法的原理说明:
Raft算法的原理说明:
首先,在Raft中一个节点有三种角色:①追随者(Follower)②候选人(Candidate)③领导者(Leader)
一开始,所有节点都是追随者状态,如果没有监听到领导者给他们发的信息,他们可以变成候选人(他觉得没有人命令他了,他就可以当领导了),候选人将会给追随者发起投票选举,追随者们将会投票给候选人,如果候选人得到了大多数票则它将会成为领导者。这个过程被成为:领导选举。
追随者是如何成为候选人的呢?首先,节点有一个自旋超时时间(150ms-300ms),谁自旋结束的快谁就是候选者,候选人发起选举【先投自己一票,然后将投票请求发送给其他节点】,如果节点在此轮选举中还没有投过票【没有投票给其他人】,那么节点将会投票给它【投票成功:节点将重置自己的选举超时时间】,一旦候选人收到大多数投票那么它将成为领导者。成为领导者之后则开始心跳联络,定期向节点发出我还在的消息,节点回复收到,这种状态直到领导者挂掉为止。
两个时间控制选取领导选举:
①自旋时间【选举超时】:是随从想要变成候选者的这段时间【想不想当领导】,一般是 150ms - 300ms ,我们一般称为节点的自旋时间。
②心跳时间【会发送日志】:消息的发送时间。领导者每隔一段时间就要给随从发送消息【相当于维护一个心跳连接】,节点收到消息之后就会自动重置自己的选举时间【自旋时间】,继而整个领导者节点就会和其他节点一直维护这个心跳连接。【心跳时间较短,否则超过300ms就会变成候选者】
投票如果失败,会一直投票,直到选到一个领导者。分布式系统中,为了保证一致性,所有改变将需要听从领导者,假设客户端发来一条 SET 5 命令,首先,领导者会将这条命令写入到log中(此时是没有提交的状态 uncommitted:意味着其他人从我这读数据还是读不到 5 这个数据的),然后会将 SET 5 这个命令记录下的日志发送给它的追随者【在下一次心跳时发送出去】,追随者们也收到了 SET 5 这个日志并写入,领导者接收到大多数节点的响应回复–已经将这条命令写入log中了【注意,此时所有节点日志中的这条命令都是uncommited的】,之后领导就会提交(committed),现在领导的数据就变成了 5,然后在下一次心跳时间领导就会响应给客户端保存成功并且通知它的随从节点:我已经提交了,你们也可以提交了,那么其他节点都是commited的,数据就变成了 5,这个过程被成为:日志复制。
日志复制总结:
领导者需要将所有的改变复制发送给其他节点,【使用日志的方式发送,且是在每一次心跳的时候发送出去的】,其他节点同步改变日志。
日志复制过程在分区中的体现【容忍分区错误】:由于网络原因,A、B被划分为1区,C、D、E被划分为2区,1区和2区之间不能通信,A原来是领导者所以在1区它还是领导者,2区经过多轮选举选出了新的领导者,现在有Client1给1区发 SET 10 的命令,A保存命令至日志然后通知B也保存日志,但是通知没有得到大多数节点的回复因此是uncommited的状态,Client2给2区发 SET 100 命令,2区领导者保存命令至日志,同时通知其它节点页保存命令至日志并且收到大多数节点的回复,2区领导者将会commit并会通知其它节点也去commit的。最终,当1区和2区的通信回复了,由于2区的领导者是经过多轮选举【看版本号】选出的所以它成为了所有节点的领导者,原来1区的领导者就变成了追随者,1区A、B节点发现跟领导者的日志不一致,马上回滚还未提交的日志并匹配新领导者的日志【同步日志】,至此所有节点的数据是一致的。
Raft算法总结:通过领导选举和日志复制保证分布式系统的一致性,即使有分区错误,也能容忍,并保证一致性。
CP面临的问题:
对于多数大型互联网应用场景,主机众多、部署分散,而且现在的集群规模越来越大,所以节点故障、网络故障是常态,而且要保证服务可用性达到99.9999999(N个9),即保证P和A,舍弃C。舍弃C的含义是:保证数据的最终一致性而不是去追求强一致性。
是对CAP 理论的延伸,思想是即使无法做到强一致性(CAP 的一致性就是强一致性),但可
以采用适当的采取弱一致性,即最终一致性。
BASE 是指
基本可用(Basically Available)
软状态( Soft State)
最终一致性( Eventual Consistency)
从客户端角度,多进程并发访问时,更新过的数据在不同进程如何获取的不同策略,决定了不同的一致性。对于关系型数据库,要求更新过的数据能被后续的访问都能看到,这是强一致性(本地事务就是强一致性,要么成功,要么失败)。如果能容忍后续的部分或者全部访问不到,则是弱一致性。如果经过一段时间后要求能访问到更新后的数据,则是最终一致性。
1)、2PC 模式
数据库支持的2PC【2 phase commit 二阶提交】,又叫做XA Transactions。
MySQL 从5.5 版本开始支持,SQL Server 2005 开始支持,Oracle 7 开始支持。
其中,XA 是一个两阶段提交协议,该协议分为以下两个阶段:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GIeH68kx-1672324453446)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233712100-248716655.png)]
如图所示,如果有订单服务和库存服务要求分布式事务,要求有一个总的事务管理器
总的事务管理让事务分为两个阶段,
第一个阶段是预备(log)。
第二个阶段是正式提交(commit)
总事务管理器接收到两个服务都预备好了log(收到ack),就告诉他们commit如果有一个没准备好,就回滚所有人。
2)、柔性事务-TCC 事务补偿型方案
刚性事务:遵循ACID 原则,强一致性。
柔性事务:遵循BASE 理论,最终一致性;
与刚性事务不同,柔性事务允许一定时间内,不同节点的数据不一致,但要求最终一致。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nT21jLW5-1672324453446)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233711298-949945167.png)]
一阶段prepare 行为:调用自定义的prepare 逻辑。
二阶段commit 行为:调用自定义的commit 逻辑。
二阶段rollback 行为:调用自定义的rollback 逻辑。
Try代码模块中需要Coder自己编写业务逻辑,Confirm代码块中会提交数据(例如:加2),那么在Cancel中则需要Coder编写回滚逻辑(例如:减2)
所谓TCC 模式,是指支持把自定义的分支事务纳入到全局事务的管理中。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DlrXtmaH-1672324453446)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233710413-1472251423.png)]
3)、柔性事务-最大努力通知型方案
按规律进行通知,不保证数据一定能通知成功,但会提供可查询操作接口进行核对。这种方案主要用在与第三方系统通讯时,比如:调用微信或支付宝支付后的支付结果通知。这种方案也是结合MQ 进行实现,例如:通过MQ 发送http 请求,设置最大通知次数。达到通知次数后即不再通知。
案例:银行通知、商户通知等(各大交易业务平台间的商户通知:多次通知、查询校对、对账文件),支付宝的支付成功异步回调。
大业务调用订单,库存,积分。最后积分失败,则一遍遍通知他们回滚
让子业务监听消息队列
如果收不到就重新发
4)、柔性事务-可靠消息+最终一致性方案(异步确保型)
实现:业务处理服务在业务事务提交之前,向实时消息服务请求发送消息,实时消息服务只记录消息数据,而不是真正的发送。业务处理服务在业务事务提交之后,向实时消息服务确认发送。只有在得到确认发送指令后,实时消息服务才会真正发送。
1、Seata简单概念
Seata使用的是2PC的模式
Seata快速开始传送门:Seata 快速开始
Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8TrhqqDN-1672324453447)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233709292-2019412487.png)]
TC (Transaction Coordinator) - 事务协调者
维护全局和分支事务的状态,驱动全局事务提交或回滚。
TM (Transaction Manager) - 事务管理器
定义全局事务的范围:开始全局事务、提交或回滚全局事务。
RM (Resource Manager) - 资源管理器
管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
2、SEATA 的分布式交易解决方案
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QZU4tdaD-1672324453447)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233707837-1976410820.png)]
Seata的工作模式: 首先,TM会告诉TC全局事务开始了,由各个事务分支向TC汇报事务的状态,是成功还是回滚。如果有一个事务分支汇报回滚,则通过TC让之前提交的事务都会回滚,回滚的依赖于Seata中的Magic表,用于记录提交之前的版本和数据。
2、Seata分布式事务体验
要执行下单,
我们只需要使用一个 @GlobalTransactional
注解在业务方法上:
@GlobalTransactional
public void purchase(String userId, String commodityCode, int orderCount) {
......
}
开启Seata分布式事务的步骤:
1.为每一个微服务创建undo_log
我们有业务步骤,但是SEATA AT
模式需要 UNDO_LOG
表,记录之前执行的操作。每个涉及的子系统对应的数据库都要新建表。
-- 注意此处0.3.0+ 增加唯一索引 ux_undo_log
CREATE TABLE `undo_log` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`branch_id` bigint(20) NOT NULL,
`xid` varchar(100) NOT NULL,
`context` varchar(128) NOT NULL,
`rollback_info` longblob NOT NULL,
`log_status` int(11) NOT NULL,
`log_created` datetime NOT NULL,
`log_modified` datetime NOT NULL,
`ext` varchar(100) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `ux_undo_log` (`xid`,`branch_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
2.导入Seata依赖
注意:这里老师直接将Seata 依赖导入common中,实际测试时,所有项目都启动不了
解决方案:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EZ9twhI5-1672324453447)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233707261-1662800271.png)]
如果是给公共服务中引入的 seata 依赖,就需要给其他不使用 seata的服务中配置如下内容:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-K45dji5a-1672324453447)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233706510-964524510.png)]
排除 common 服务里面的 seata 依赖,这里因为我们暂时只 给 订单、库存服务里面使用,其他微服务都需要进行如下操作:排除seata 依赖。
此处我采用给需要的服务引入 seata 依赖就行。这里暂时就向 库存服务和 订单服务里面引入 seata 依赖。
这里我们使用 2.1.0 的版本 ,使用 seata-server 0.7.1
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ATGFJ6bt-1672324453447)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233705993-190736683.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VhaSPvAV-1672324453448)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233705376-1739914668.png)]
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-seataartifactId>
<version>2.1.0.RELEASEversion>
dependency>
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ovmu2VyI-1672324453448)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233704847-89860840.png)]
3、修改seata-server的配置文件
将registry.conf中的type修改为nacos并修改serverAddr为本机注册中心地址
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4OKJvLp7-1672324453448)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233704503-1619944020.png)]
此时,启动 seata-server,可以在 nacos中看到一个 serverAddr服务注册进来。
4.所有想要用到分布式事务的微服务使用seata DataSourceProxy代理自己的数据源
由于Seata通过代理数据源现分支持事务,如果没有注册,事务无法成功返回滚
@Configuration
public class DataSourceConfig {
@Bean
@ConfigurationProperties(prefix = "spring.datasource")
public DruidDataSource druidDataSource() {
return new DruidDataSource();
}
/**
* 需要将 DataSourceProxy 设置为主数据源,否则事务无法回滚
*
* @param druidDataSource The DruidDataSource
* @return The default datasource
*/
@Primary
@Bean("dataSource")
public DataSource dataSource(DruidDataSource druidDataSource) {
return new DataSourceProxy(druidDataSource);
}
}
与上面配置数据源的方式等价,这么配置
注意细节:高版本之后无需配置数据源,这步可忽略
@Configuration
public class MySeataConfig {
@Autowired
DataSourceProperties dataSourceProperties;
@Bean
public DataSource dataSource(DataSourceProperties dataSourceProperties){
// properties.initializeDataSourceBuilder().type(type).build();
HikariDataSource dataSource = dataSourceProperties.initializeDataSourceBuilder().type(HikariDataSource.class).build();
if (StringUtils.hasText(dataSourceProperties.getName())) {
dataSource.setPoolName(dataSourceProperties.getName());
}
return new DataSourceProxy(dataSource);//使用 seata 进行包装数据源
}
}
在order、ware中都配置好上面的配置。
5、@GlobalTransactional
在大事务的入口标记注解@GlobalTransactional
开启全局事务,并且每个小事务标记注解@Transactional
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Mrj7CAAz-1672324453448)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233704175-550129064.png)]
6、其他配置
要求每个微服务要有register.conf和file.conf
将register.conf和file.conf复制到需要开启分布式事务的根目录,并修改file.conf
vgroup_mapping.${application.name}-fescar-service-group = “default”
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BwcXyhlO-1672324453448)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233703796-966867612.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BfdNf9W2-1672324453449)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233703416-132871756.png)]
官方要求:
- file.conf 的 service.vgroup_mapping 配置必须和
spring.application.name
一致
org.springframework.cloud:spring-cloud-starter-alibaba-seata
在的org.springframework.cloud.alibaba.seata.GlobalTransactionAutoConfiguration
类中,默认会使用作服务名注册到Seata${spring.application.name}-fescar-service-group
Server上,如果和file.conf
中的配置不一致,会提示no available server to connect
错误也可以通过配置
spring.cloud.alibaba.seata.tx-service-group
修改后缩,但必须和file.conf
中的配置保持一致
在大事务上@GlobalTransactional,小事务上@Transactional即可。
* seata控制分布式事务 * 1)、每一个微服务先必须创建 undo_log; * 2)、安装事务协调器;seata-server: https://github.com/seata/seata/releases * 3)、整合 * 1、导入依赖 spring-cloud-starter-alibaba-seata seata-all-0.7.1 * 2、解压并启动seata-server: * registry.conf: 注册中心配置:修改 registry type =nacos * file.conf: * 3、所有想要用到分布式事务的微服务使用 seata DataSourceProxy代理自己的数据源 * 4、每个微服务,都必须导入 * registry.conf * file.conf: vgroup_mapping.{application.name}-fescar-service-group = "default" * 5、启动测试分布式事务 * 6、给分布式大事务的入口标注 @GlobalTransactional * 7、每一个远程的小事务用 @Transactional
seata 的AT模式(实际上就是 2pc模式)并不适合于高并发场景,原因在于:加锁导致整个线程变成串行化执行,效率太低下了
seata的TCC模式、SAGA模式可以自行学习:
传送门:https://github.com/seata/seata-samples
以下情况适合使用 at 模式:
比如发布商品后需要保存商品,这里面发生了几次远程调用,适合使用at模式。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tbX2F1ar-1672324453449)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233702817-969825751.png)]
在高并发,如下单,at模式有很多锁,影响效率。所以不使用at tcc。使用消息方式。
失败了之后发消息。库存服务本身也可以使用自动解锁模式。消息队列。
自动解锁:库存服务订阅消息队列,库存解锁发给消息队列
保存库存工作单和库存工作单详情,
锁定库存后数据库记录。后面的事务失败后看前面的库存,有没解锁的就解锁。
定期全部检索很麻烦,索引引入延迟队列。
锁库存后害怕订单失败,锁库存后发送给消息队列,只不过要暂存一会先别被消费。半小时以后再消费就可以知道大事务成功没有。
具体逻辑:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b0FgpoVq-1672324453449)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233702308-387218659.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nIYH7sT5-1672324453449)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233701190-1873017511.png)]
增强版逻辑
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EiB6kOh3-1672324453449)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233700170-1697085468.png)]
消息队列应用场景一:异步处理
第一种模式我们必须等各个操作的做完才能返回响应,例如:发送邮件、发送短信能不能收到其实并不是侧重点,因此。可以启动两个线程来执行,也就是第二种模式,在此基础上还可以进行优化就是使用消息中间件,将注册消息存入消息队列中让邮件服务、短信服务慢慢去执行从而提升性能。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Xm3HoRYH-1672324453450)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233659405-981612789.png)]
消息队列应用场景二:应用解耦
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ciR47mr3-1672324453450)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233657645-351279588.png)]
例如当我们下订单需要去调用库存系统的接口,但是库存系统的接口经常需要升级,从而导致需要去修改订单系统的源代码,因此,我们可以将订单信息写入消息队列中不管库存系统如何升级,只需要订阅去执行即可从而达到解耦的作用。
消息队列应用场景三:流量控制(流量削峰)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KrtJ75DW-1672324453450)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233656538-880663184.png)]
例如秒杀系统,当百万级别的请求向后台发送后台是会宕机的,因此,将请求消息写入消息对了中由后台慢慢的去处理,提高系统的高可用性。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1Y5XCXAU-1672324453450)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233655858-1905545811.png)]
消息代理:替我们接收、发送消息的服务器
目的地:消息发送到哪里
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bnZcbyv2-1672324453451)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233655049-240932002.png)]
点对点模式:有很多的消息的接收者,但消息的接受者只能有一个,谁能拿到消息需要靠抢;
RabbitMQ是基于AMQP协议实现的并且兼容JMS,ActiveMQ是基于JMS实现的。JMS和AMQP的区别在于:JMS面向纯java平台不不支持跨平台而AMQP是可以跨平台,假如后台服务有用PHP编写则可以兼容。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fuI3G5bv-1672324453451)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233654009-61106586.png)]
JMS和AMQP的简单对比 :
①.AMQP的消息模型中direct exchange是类比JMS中P2P(Queue),AMQP的其它四种消息模型则是类比于JMS的Topic
②.JMS支持的各种消息类型,AMQP只支持byte[]但也无妨最后都可以json序列化后传输
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FPROLp6Z-1672324453451)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233652995-1895419189.png)]
Spring对JMS、AMQP都是支持的并且提供了自动配置和常用注解
RabbitMQ简介:
RabbitMQ是一个由erlang开发的AMQP(Advanved Message Queue Protocol)的开源实现。
核心概念
Message
消息,消息是不具名的,它由消息头和消息体组成。消息体是不透明的,而消息头则由一系列的可选属性组成, 这些属性包括routing-key(路由键)、priority(相对于其他消息的优先权)、delivery-mode(指出该消息可 能需要持久性存储)等。
Publisher
消息的生产者,也是一个向交换器发布消息的客户端应用程序。
Exchange
交换器,用来接收生产者发送的消息并将这些消息路由给服务器中的队列。
Exchange有4种类型:direct(默认),fanout, topic, 和headers,不同类型的Exchange转发消息的策略有所区别。
Queue
消息队列,用来保存消息直到发送给消费者。它是消息的容器,也是消息的终点。一个消息可投入一个或多个队列。消息一直 在队列里面,等待消费者连接到这个队列将其取走。
Binding
绑定,用于消息队列和交换器之间的关联。一个绑定就是基于路由键将交换器和消息队列连接起来的路由规则,所以可以将交 换器理解成一个由绑定构成的路由表。
Exchange 和Queue的绑定可以是多对多的关系。
Connection
网络连接,比如一个TCP连接。
Channel
信道,多路复用连接中的一条独立的双向数据流通道。信道是建立在真实的TCP连接内的虚拟连接,AMQP 命令都是通过信道 发出去的,不管是发布消息、订阅队列还是接收消息,这些动作都是通过信道完成。因为对于操作系统来说建立和销毁 TCP 都 是非常昂贵的开销,所以引入了信道的概念,以复用一条 TCP 连接。
Consumer
消息的消费者,表示一个从消息队列中取得消息的客户端应用程序。
Virtual Host
虚拟主机,表示一批交换器、消息队列和相关对象。虚拟主机是共享相同的身份认证和加 密环境的独立服务器域。每个 vhost 本质上就是一个 mini 版的 RabbitMQ 服务器,拥 有自己的队列、交换器、绑定和权限机制。vhost 是 AMQP 概念的基础,必须在连接时 指定,RabbitMQ 默认的 vhost 是 / 。
Broker
表示消息队列服务器实体。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-T5MJm2S5-1672324453451)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233652172-844234490.png)]
总结:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pnKgozmw-1672324453451)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233651506-275819342.png)]
工作流程: 首先,生产者客户端会向消息中间件服务器发送Message,Message由消息头(一些参数设置)和消息体(真正的消息内容)组成,发送消息的时候还要指定交换机,交换机和队列具有绑定关系:交换机通过路由键将消息发送给指定的接收队列,消费者监听了这个队列,队列中的内容就会被消费者实时拿到(通过信道拿到)。
无论是生产者发送消息还是消费者客户端者接收消息需要使用connnection去和RabbitMQ创建一个长连接,长连接类似于高速公里,信道类似于高速公路中的每个车道:收发数据都在连接中开辟信道进行收发;
RabbitMQ还有一个虚拟主机即类似于Docker中的容器彼此互不干扰,不需要创建多个RabbitMQ只需要创建多个虚拟机即可实现向java后台、PHP后台发送消息。
长连接的好处是当客户端宕机之后,RabbitMQ实时感知有消费者下线,继而将不会向消费者客户端发送消息而是将消息持久化存储起来保证消息不会大面积丢失。
docker安装RabbitMQ命令:
docker run -d --name rabbitmq -p 5671:5671 -p 5672:5672 -p 4369:4369 -p 25672:25672 -p 15671:15671 -p 15672:15672 rabbitmq:management
4369, 25672 (Erlang发现&集群端口)
5672, 5671 (AMQP端口)
15672 (web管理后台端口)
61613, 61614 (STOMP协议端口)
1883, 8883 (MQTT协议端口)
rabbitmq相应文档
自启动:
docker update rabbitmq --restart=always
ps:docker 安装 rabbitmq,拉取不成功,提示:
docker: Error response from daemon: Get “https://registry-1.docker.io/v2/”: net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers).
重启虚拟机,多重启几次。
登录地址: ip:15672
首次登录的账号密码都是:guest
OverView介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5N1jarzd-1672324453452)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233650557-18278498.png)]
查看对应的协议和端口号
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fWvwV37G-1672324453452)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233649357-978873115.png)]
RabbitMQ配置文件的迁移,从老版本的RabbitMQ中下载配置文件
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X2Kxk9Ei-1672324453452)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233648010-1516353602.png)]
上传至新版本的RabbitMQ配置文件
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HQLSqdaF-1672324453453)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233646805-1901747790.png)]
Connections介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oYtoLM5E-1672324453453)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233645488-1518967477.png)]
Channels介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-e49Z4sov-1672324453453)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233644818-1090618667.png)]
Exchanges介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YjbPJtNZ-1672324453453)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233644102-633211704.png)]
添加新的交换机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xErXuRFF-1672324453453)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233643095-1615816934.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8w9KwTwT-1672324453454)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233642017-1062849964.png)]
队列介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XlquRt5R-1672324453454)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233640945-384757528.png)]
Admin介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-H2FunE12-1672324453454)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233639746-388355307.png)]
虚拟主机介绍:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pFl8yuon-1672324453454)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233638666-474140565.png)]
查看自己创建的虚拟主机:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rtXsotTv-1672324453454)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233637392-54754857.png)]
进入后可配置权限
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tG6dUo52-1672324453455)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233636153-725727942.png)]
删除虚拟主机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zr31dkIk-1672324453455)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233635384-2000421814.png)]
设置最大连接数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8XT7zchV-1672324453455)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233634198-1832458967.png)]
显示集群消息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FXWAIju7-1672324453455)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233633169-1621057945.png)]
AMQP 中的消息路由
AMQP 中消息的路由过程和 Java 开发者熟悉的 JMS 存在一些差别,AMQP 中增加了 Exchange 和
Binding 的角色。生产者把消息发布到 Exchange 上,消息最终到达队列并被消费者接收,而 Binding 决定交 换器的消息应该发送到那个队列。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-cmrdx9sV-1672324453455)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233632059-1756236877.png)]
Exchange 类型
Exchange分发消息时根据类型的不同分发策略有区别,目前共四种类型:direct、fanout、topic、headers 。headers 匹配 AMQP 消息的 header 而不是路由键,headers 交换器和 direct 交换器完全一致,但性能差很多,目前几乎用不到了,所以直接 看另外三种类型:
消息中的路由键(routing key)如果和Binding 中的 binding key 一致, 交换器 就将消息发到对应的队列中。路由键与队 列名完全匹配,如果一个队列绑定到交换 机要求路由键为“dog”,则只转发 routingkey 标记为“dog”的消息,不会转发“dog.puppy”,也不会转发“dog.guard” 等等。它是完全匹配、单播的模式。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X8o3jUvv-1672324453456)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233631508-947486812.png)]
每个发到fanout类型交换器的消息都会分到所有绑定的队列上去。fanout交换器不处理路由键,只是简单的将队列绑定到交换器上,每个发送到交换器的消息都会被转发到与该交换器绑定的所有队列上。很像子网广播,每台子网内的主机都获得了一份复制的消息。
fanout 类型转发消息是最快的。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nQoD38D8-1672324453456)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233631054-421568737.png)]
topic 交换器通过模式匹配分配消息的 路由键属性,将路由键和某个模式进行匹配,此时队列需要绑定到一个模式上。 它将路由键和绑定键的字符串切分成单 词,这些单词之间用点隔开。它同样也 会识别两个通配符:符号“#”和符号“ * ”。#匹配0个或多个单词**,***匹配一 个单词。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QidJV2KB-1672324453456)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233630592-1890937236.png)]
创建一个交换机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S7tZFQH1-1672324453456)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233629915-223173667.png)]
创建一个队列
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EJbk8jUx-1672324453457)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233629185-8681330.png)]
将交换机与队列进行绑定
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1JuT49ae-1672324453457)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233628322-1543798844.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dZrBJrBP-1672324453457)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233627735-850942655.png)]
Unbind:可以解除绑定
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dFCA8uei-1672324453457)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233627281-508688031.png)]
测试交换机 的三种类型
直接交换机:精确匹配路由键
根据这张图创建所有要用的交换机、队列、以及绑定关系
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mDl6Ptc9-1672324453458)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233626793-721077354.png)]
依次创建4个队列
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Z2YV6ONl-1672324453458)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233626281-288481399.png)]
1.创建 直接交换机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xqI8fdrA-1672324453458)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233625757-266171571.png)]
绑定关系
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wcDh6gox-1672324453458)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233625350-619290921.png)]
发布消息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bwvqErbn-1672324453458)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233624947-124639799.png)]
查看消息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BGCVP4B5-1672324453459)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233624478-1434317504.png)]
Nack:表示收到了消息不告诉服务器,消息队列中的消息数量不会减少
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WPvKxFgl-1672324453459)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233623892-141403667.png)]
ACK:告诉服务器收到了消息,队列中的消息就没了
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-O5xy4zh5-1672324453459)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233623133-1124661596.png)]
2.Fanout-Exchange
扇形交换机是广播的方式,与其绑定的队列,无论是否有路由键都会收到消息
创建扇形交换机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qHLq8uHG-1672324453459)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233622712-2077814826.png)]
绑定队列
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ubajO5d8-1672324453459)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233622271-1004288404.png)]
发布消息.
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ipnpICwq-1672324453460)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233621763-448404389.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8drEHLnz-1672324453460)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233621342-1166146041.png)]
3.Topic-Exchange
主题交换机用于模糊匹配,#匹配0个或多个单词,*匹配一个单词
添加交换机
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GJJhGlnu-1672324453460)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233620676-177535505.png)]
绑定队列
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nhETfJy9-1672324453460)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233620092-1719488929.png)]
发布消息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bf612JrQ-1672324453460)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233619563-1142481163.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Mwyqa81m-1672324453461)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233619094-425280507.png)]
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-amqpartifactId>
dependency>
2.配置
配置文件前缀如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W2Ar2MVq-1672324453461)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233618534-98743112.png)]
application.properties配置文件配置:
spring.rabbitmq.host=192.168.56.10
spring.rabbitmq.port=5672
spring.rabbitmq.virtual-host=/
3. 启动RabbitMQ
主启动类加上 @EnableRabbit注解
/**
* 使用RabbitMQ
* 1、引入amqp场景:RabbitAutoConfiguration 就会自动生效
*
* 2、给容器中自动配置了
* RabbitTemplate、AmqpAdmin、CachingConnectionFactory、RabbitMessagingTemplate;
* 所有的属性都是 spring.rabbitmq
* @ConditionalOnProperty(prefix = "spring.rabbitmq", name = "dynamic", matchIfMissing = true)
* public class RabbitProperties
*
* 3、给配置文件中配置 spring.rabbitmq 信息
* 4、@EnableRabbit :@EnableXxxx:开启功能
*
*/
@EnableRabbit
@SpringBootApplication
public class GulimallOrderApplication {
public static void main(String[] args) {
SpringApplication.run(GulimallOrderApplication.class, args);
}
}
1.使用AmqpAdmin创建交换机、队列、绑定关系
交换机的类型如下图所示
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eVxeeblf-1672324453461)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233618193-1999810417.png)]
ps:快捷键 f4:查看继承关系
@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class GulimallOrderApplicationTests {
@Autowired
AmqpAdmin amqpAdmin;
/**
* 1、如何创建 Exchange 、Queue 、Binding
* 1)、使用 AmqpAdmin 进行创建
* 2、如何收发消息
*/
@Test
public void createExchange() {
//amqpAdmin
//Exchange
/**
* public DirectExchange(String name, boolean durable, boolean autoDelete, Map arguments)
* durable:持久化
* autoDelete:自动删除
*/
DirectExchange directExchange = new DirectExchange("hello-java-exchange", true, false, null);
amqpAdmin.declareExchange(directExchange);
log.info("Exchange[{}]创建成功","hello-java-exchange");
}
2.创建队列
@Test
public void createQueue(){
//public Queue(String name, boolean durable, boolean exclusive, boolean autoDelete, Map arguments)
Queue queue = new Queue("hello-java-queue", true, false, false);
amqpAdmin.declareQueue(queue);
log.info("Queue[{}]创建成功","hello-java-queue");
}
3.绑定
@Test
public void createBinding(){
/**
* public Binding(String destination, DestinationType destinationType, String exchange, String routingKey,
* Map arguments)
* destination:目的地
* destinationType:目的地类型
* exchange:交换机
* routingKey:路由键
* arguments:自定义参数
* 将 exchange指定的交换机和 destination目的地进行绑定,使用routingKey作为指定的路由键
*/
Binding binding = new Binding("hello-java-queue",
Binding.DestinationType.QUEUE,
"hello-java-exchange",
"hello.java",
null);
amqpAdmin.declareBinding(binding);
log.info("Binding[{}]创建成功","hello-java-binding");
}
1.使用RabbitTemplate工具类发送json类型消息
前提条件:给容器中注入json转化器
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8F373E9P-1672324453461)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233617577-1700670757.png)]
如果容器中有相应配置,就用配置的,没有就用默认的:发送序列化后的数据。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D8gBaZG5-1672324453462)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233616231-237958955.png)]
@Autowired
RabbitTemplate rabbitTemplate;
@Test
public void sendMessageTest(){
OrderReturnReasonEntity reasonEntity = new OrderReturnReasonEntity();
reasonEntity.setId(1L);
reasonEntity.setCreateTime(new Date());
reasonEntity.setName("哈哈");
//1、发送消息,如果发送的消息是个对象,我们会使用序列化机制,将对象写出去,对象必须实现Serializable
String msg = "Hello World!";
//2、发送的对象类型的消息,可以是一个JSON
rabbitTemplate.convertAndSend("hello-java-exchange","hello.java",reasonEntity);
log.info("消息发送完成{}",reasonEntity);
}
自己编写配置,实现发送JSON数据。
@Configuration
public class MyRabbitConfig {
@Bean
public MessageConverter messageConverter(){
return new Jackson2JsonMessageConverter();
}
}
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FbOyvXkz-1672324453462)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233615735-172071877.png)]
@RabbitListener使用前提:必须有@EnableRabbit并且标注方法的类必须在组件中
@RabbitListener标注类上监听多个队列
@RabbitHandler标注在方法上用于接受不同类型的消息对象
@Service("orderItemService")
public class OrderItemServiceImpl extends ServiceImpl<OrderItemDao, OrderItemEntity> implements OrderItemService {
@Override
public PageUtils queryPage(Map<String, Object> params) {
IPage<OrderItemEntity> page = this.page(
new Query<OrderItemEntity>().getPage(params),
new QueryWrapper<OrderItemEntity>()
);
return new PageUtils(page);
}
/**
* queues:声明需要监听的所有队列
*
* org/springframework/amqp/core/Message
*
* 参数可以写一下类型
* 1、Message message:原生消息详细消息。头+体
* 2、T<发送的消息的类型> OrderReturnReasonEntity content:假如发送消息的类型为 OrderReturnReasonEntity 则接受的消息类型也可以为 OrderReturnReasonEntity
* 3、Channel channel:当前传输数据的通道
*
*
* Queue: 可以很多人都来监听。只要收到消息,队列删除消息,而且只能有一个收到此消息
* 场景:
* 1)、订单服务启动多个;同一个消息,只能有一个客户端收到
* 2)、只有一个消息完全处理完,方法运行结束,我们就可以接收到下一个消息
* @param message
* @param content
* @param channel
* @throws InterruptedException
*/
// @RabbitListener(queues = {"hello-java-queue"})
@RabbitHandler
public void receiveMessage(Message message,
OrderReturnReasonEntity content,
Channel channel) throws InterruptedException {
// (id=1, name=哈哈, sort=null, status=null, createTime=Sun Dec 11 22:17:53 CST 2022)
System.out.println("接收到消息..."+content);
byte[] body = message.getBody();
//消息头属性
MessageProperties properties = message.getMessageProperties();
// Thread.sleep(3000);
System.out.println("消息处理完成=>" + content.getName());
}
模拟多个客户端监听Queue。只要收到消息,队列就删除消息,而且只能有一个客户端收到此消息的场景:
1.订单服务启动多个,同一个消息,只能有一个客户端收到
模拟多个订单服务
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9588MmSj-1672324453462)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233615312-135901482.png)]
模拟发送多个消息
@RestController
public class RabbitController {
@Autowired
RabbitTemplate rabbitTemplate;
@GetMapping("/sendMq")
public String sendMq(@RequestParam(value = "num",defaultValue = "10") Integer num){
for (int i = 0; i < num; i++) {
if (i % 2 == 0){
OrderReturnReasonEntity reasonEntity = new OrderReturnReasonEntity();
reasonEntity.setId(1L);
reasonEntity.setCreateTime(new Date());
reasonEntity.setName("哈哈-"+i);
rabbitTemplate.convertAndSend("hello-java-exchange","hello.java",reasonEntity,new CorrelationData(UUID.randomUUID().toString()));
}else{
OrderEntity orderEntity = new OrderEntity();
orderEntity.setOrderSn(UUID.randomUUID().toString());
rabbitTemplate.convertAndSend("hello-java-exchange","hello.java",orderEntity,new CorrelationData(UUID.randomUUID().toString()));
}
}
return "ok";
}
}
结果查看,说明:同一个消息,只能有一个客户端收到
9000
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SZhqHOOU-1672324453462)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233614849-1794950144.png)]
9001
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P2xIk7Ii-1672324453462)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233614384-1715642891.png)]
2. 只有当一个消息完全处理完,方法运行结束,客户端才可以接收下一个消息
模拟复杂业务逻辑
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jqyamQWj-1672324453463)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233613885-586179710.png)]
结果查看
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xSFiA2Mz-1672324453463)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233613382-1285954700.png)]
@RabbitListener标注类上监听多个队列
@RabbitHandler标注在方法上用于接受不同类型的消息对象
模拟向队列发送不同消息对象
@RabbitHandler标注在方法上,重载区分不同的消息
@RabbitHandler
public void receiveMessage(Message message,
OrderReturnReasonEntity content,
Channel channel) throws InterruptedException {
// (id=1, name=哈哈, sort=null, status=null, createTime=Sun Dec 11 22:17:53 CST 2022)
System.out.println("接收到消息..."+content);
byte[] body = message.getBody();
//消息头属性
MessageProperties properties = message.getMessageProperties();
// Thread.sleep(3000);
System.out.println("消息处理完成=>" + content.getName());
}
@RabbitHandler
public void receiveMessage2(OrderEntity content,
Channel channel) throws InterruptedException {
System.out.println("接收到消息..."+content.getClass());
System.out.println("消息处理完成=>" + content.getOrderSn());
}
查看结果
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KSt95CyW-1672324453463)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233612743-1709111235.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-V6jfCVC7-1672324453463)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233612344-620531992.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kmMmhS1V-1672324453464)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233611398-757657558.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eW9UZ1Rc-1672324453464)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233610502-1993625742.png)]
ComfirmCallBack:当生成者发送消息给broker,broker接收时触发的回调函数
开启ComfirmCallBack回调函数逇步骤:
①开启
# 开启发送端确认
spring.rabbitmq.publisher-confirms=true
②编写回调函数
@Configuration
public class MyRabbitConfig {
@Autowired
RabbitTemplate rabbitTemplate;
/**
* 定制 RabbitTemplate
* 1、服务收到消息就回调
* 1、spring.rabbitmq.publisher-confirms=true
* 2、设置确认回调ConfirmCallback
*/
@PostConstruct // MyRabbitConfig对象创建完成以后,执行这个方法
public void initRabbitTemplate(){
//设置确认回调
rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
/**
*
* @param correlationData 当前消息的唯一关联数据(这个是消息的唯一id)
* @param ack 消息是否成功收到
* @param cause 失败的原因
*/
@Override
public void confirm(CorrelationData correlationData, boolean ack, String cause) {
System.out.println("confirm...CorrelationData["+correlationData+"]==>ack["+ack+"]==>cause["+cause+"]");
}
});
}
测试:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sx3nCU53-1672324453464)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233609797-1335030895.png)]
ReturnCallBack:当交换机由于某些原因未将消息传送到指定的队列时,触发的回调函数
开启ReturnCallBack回调函数的步骤:
①开启
# 开启发送端消息抵达队列的确认
spring.rabbitmq.publisher-returns=true
# 只要抵达队列,以异步方式优先回调我们这个returnConfirm
spring.rabbitmq.template.mandatory=true
②编写回调函数
/**
* 2、消息正确地抵达队列进行回调
* 1、spring.rabbitmq.publisher-returns=true
* spring.rabbitmq.template.mandatory=true
* 2、设置确认回调ReturnCallback
* 3、消费端确认(保证每个消息被正确消费,此时才可以broker删除这个消息)。
*/
@PostConstruct // MyRabbitConfig对象创建完成以后,执行这个方法
public void initRabbitTemplate(){
//设置消息抵达队列的确认回调
rabbitTemplate.setReturnCallback(new RabbitTemplate.ReturnCallback() {
/**
* 只要消息没有投递给指定的队列,就触发这个失败回调
* @param message 投递失败的消息详细信息
* @param replyCode 回复的状态码
* @param replyText 回复的文本内容
* @param exchange 当时这个消息发给哪个交换机
* @param routingKey 当时这个消息用哪个路由键
*/
@Override
public void returnedMessage(Message message, int replyCode, String replyText, String exchange, String routingKey) {
System.out.println("Fail Message["+message+"]==>replyCode["+replyCode+"]==>replyText["+replyText+"]==>exchange["+exchange+"]==>["+routingKey+"]");
}
});
}
发送消息时还可以设置消息的唯一id
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vOkK5VfK-1672324453464)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233609411-1720247308.png)]
测试:失败回调
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AFhCqJs1-1672324453464)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233609053-1283111532.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wb3duVwQ-1672324453465)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233608602-1637978439.png)]
说明: 消费者消费消息默认采用的是自动ACK也就是自动签收,broker通过通道将消息都传递给你之后自动将消息移除队列,这个就是自动ACK。采用自动ACK将会出现一些问题:当消费者接收到许多条消息时,依次处理这些消息但是在此期间宕机了将会导致后续未处理的消息丢失。
解决方案:手动ACK
手动ACK可以看作是签收操作。
①配置
#手动ack消息
spring.rabbitmq.listener.simple.acknowledge-mode=manual
②手动ACK回复
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-w6HWDql5-1672324453465)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233607674-823510890.png)]
@RabbitHandler
public void receiveMessage(Message message,
OrderReturnReasonEntity content,
Channel channel) throws InterruptedException {
// (id=1, name=哈哈, sort=null, status=null, createTime=Sun Dec 11 22:17:53 CST 2022)
System.out.println("接收到消息..."+content);
byte[] body = message.getBody();
//消息头属性
MessageProperties properties = message.getMessageProperties();
// Thread.sleep(3000);
System.out.println("消息处理完成=>" + content.getName());
//在Channel 内是 按顺序自增的。
long deliveryTag = message.getMessageProperties().getDeliveryTag();
System.out.println("deliveryTag==>" + deliveryTag);
//签收货物,非批量模式
try{
if (deliveryTag % 2 == 0){
//收货
channel.basicAck(deliveryTag,false);
System.out.println("签收了货物..."+ deliveryTag);
}else{
// 退货 requeue=false 丢弃 requeue=true 发回服务器,服务器重新入队。
//long deliveryTag, boolean multiple, boolean requeue
channel.basicNack(deliveryTag,false,true);
//long deliveryTag, boolean requeue
// channel.basicReject();
System.out.println("没有签收货物..." + deliveryTag);
}
}catch (Exception e){
//网络中断
}
}
如何签收:
业务成功就应该签收:channel.basicAck(deliveryTag,false);
业务处理失败就应该拒签,让别人处理:channel.basicNack(deliveryTag,false,true);
ps:总结
* 定制 RabbitTemplate * 1、服务收到消息就回调 * 1、spring.rabbitmq.publisher-confirms=true * 2、设置确认回调ConfirmCallback * 2、消息正确地抵达队列进行回调 * 1、spring.rabbitmq.publisher-returns=true * spring.rabbitmq.template.mandatory=true * 2、设置确认回调ReturnCallback * 3、消费端确认(保证每个消息被正确消费,此时才可以broker删除这个消息)。 * spring.rabbitmq.listener.direct.acknowledge-mode=manual 手动签收 * 1、默认是自动确认的,只要消息接收到,客户端就会自动确认,服务端就会移除这个消息 * 问题: * 我们收到很多消息,自动回复给服务器ack,只有一个头消息处理成功,宕机了。发生消息丢失; * 手动确认模式:只要我们没有明确高速MQ,货物被签收,没有Ack ,消息就一直是 unacked 状态。即使 Consumer宕机,消息不会丢失,会重新变为 Ready状态。 * 下一次有新的Consumer连接进来就发送给它。 * 2、如何签收: * channel.basicNack(deliveryTag,false,false);签收;业务成功就应该签收 * channel.basicNack(deliveryTag,false,true);拒签;业务失败,拒签
消费者获取到消息,成功处理,可以回复Ack给Broker
默认自动ack,消息被消费者收到,就会从broker的queue中移除
queue无消费者,消息依然会被存储,直到消费者消费
消费者收到消息,默认会自动ack。但是如果无法确定此消息是否被处理完成,
或者成功处理。我们可以开启手动ack模式
使用消息队列的目的是:保证数据的最终一致性。
场景:
比如未付款订单,超过一定时间后,系统自动取消订单并释放占有物品。
常用解决方案:
spring的 schedule 定时任务轮询数据库
缺点:
解决:rabbitmq的消息TTL和死信Exchange结合
采用定时任务的方式:每隔一段时间进行全表的扫描,会消耗系统内存和增加数据库的压力,最致命的是存在较大的时间误差
假如:10:00定时任务开始执行,则10:01有用户下订单但未支付,10:30的时候定时任务再次执行,这个订单还差1分钟才能进行关单操作,因此,下一次扫描到它要等到11:00,存在着29分钟的误差时间。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lz9RA1TI-1672324453465)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233606861-39163681.png)]
采用消息队列可以完美的解决定时任务所带来的缺陷
假如:10:00下订单,再下订单之前先给消息队列发送一条下单消息,等30分钟自动发送关闭订单消息,监听服务收到消息,去查看此订单是否完成支付,若未完成支付则关闭订单。误差也就一两分钟。对于解锁库存也是同理。
如果恰好在一次扫描后完成业务逻辑,那么就会等待两个扫描周期才能扫到过期的订单,不能保证时效性
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3GvGR3Yo-1672324453465)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233606256-435293023.png)]
延迟队列存储的对象肯定是对应的延时消息,所谓"延时消息"是指当消息被发送以后,并不想让消费者立即拿到消息,而是等待指定时间后,消费者才拿到这个消息进行消费。
设置消息的过期时间: 在过期时间内都没有被消费则此消息将会被丢弃并称之为死信
设置队列的过期时间:在此过期时间内都没有队列被客户端连接则队列里的所有消息都被成为死信
PS:一些相关知识解释:
消息的TTL(Time To Live)
死信路由: 消息过期未被消费的,则消息会被交给一个指定的路由器,这个路由器由于只接收死信所以被成为死信路由
Dead Letter Exchanges(DLX)
一个消息在满足如下条件下,会进死信路由,记住这里是路由而不是队列,一个路由可以对应很多队列。(什么是死信)
Dead Letter Exchange其实就是一种普通的exchange,和创建其他exchange没有两样。只是在某一个设置Dead Letter Exchange的队列中有消息过期了,会自动触发消息的转发,发送到Dead Letter Exchange中去。
我们既可以控制消息在一段时间后变成死信,又可以控制变成死信的消息被路由到某一个指定的交换机,结合二者,其实就可以实现一个延时队列。
手动ack&异常消息统一放在一个队列处理建议的两种方式
TTL:RabbitMQ可以针对Queue设置x-expires 或者 针对Message设置 x-message-ttl,来控制消息的生存时间,如果超时(两者同时设置以最先到期的时间为准),则消息变为dead letter(死信)
死信路由DLX:RabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,如果队列内出现了dead letter,则按照这两个参数重新路由转发到指定的队列。
x-dead-letter-exchange:出现dead letter之后将dead letter重新发送到指定exchange
x-dead-letter-routing-key:出现dead letter之后将dead letter重新按照指定的routing-key发送
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Xf0tvM9l-1672324453465)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233605502-68293719.png)]
RabbitMQ实现延时队列的原理:通过设置队列的过期时间使消息变成死信,此队列是不能被任何服务监听的,当消息过期【成为死信】后,因为给队列设置了特定的参数,所以rabbitmq 将死信取出后不会丢弃,而是通过 x-dead-letter-exchange参数的设置:出现dead letter之后将dead letter重新发送到指定exchange,也就是 死信交换机;此外通过 x-dead-letter-routing-key参数的设置:出现dead letter之后将dead letter重新按照指定的routing-key发送,也就是说死信交换机通过指定的路由键找到指定绑定关系的队列,最终的结果就是:死信跑到了指定的队列中去,如果有消费者监听了这个队列里面的内容【这个队列里面的内容一定是生产者发的消息过期了之后的】,那么就可以做相应的操作了。
指定队列只接收死信也就是延时消息,服务器专门监听指定队列从而达到定时任务的效果。
实现1:给队列设置过期时间,推荐使用
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9V3znbFB-1672324453466)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233604635-877562878.png)]
实现方式2:给消息设置过期时间,不推荐使用
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4y6HyNHC-1672324453466)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233603060-1640590221.png)]
不推荐使用的原因是:RabbitMQ采用的是懒检查,假如第一个消息设置的是5分钟过期,第二个消息设置的是2分钟过期,第三个消息设置的是30s过期,RabbitMQ过来一看消息5分钟后才过期,那么5分钟之后才会来将消息路由并不会关注后面消息的过期时间。
按照下图逻辑,模拟下单成功1分钟后,收到关闭订单的消息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oisoSWop-1672324453466)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233601305-1383932422.png)]
订单分布式主体逻辑
- 订单超时未支付触发订单过期状态修改与库存解锁
创建订单时消息会被发送至队列order.delay.queue,经过TTL的时间后消息会变成死信以order.release.order的路由键经交换机转发至队列order.release.order.queue,再通过监听该队列的消息来实现过期订单的处理
- 如果该订单已支付,则无需处理
- 否则说明该订单已过期,修改该订单的状态并通过路由键order.release.other发送消息至队列stock.release.stock.queue进行库存解锁
- 库存锁定后延迟检查是否需要解锁库存
在库存锁定后通过路由键stock.locked发送至延迟队列stock.delay.queue,延迟时间到,死信通过路由键stock.release转发至stock.release.stock.queue,通过监听该队列进行判断当前订单状态,来确定库存是否需要解锁
- 由于关闭订单和库存解锁都有可能被执行多次,因此要保证业务逻辑的幂等性,在执行业务是重新查询当前的状态进行判断
- 订单关闭和库存解锁都会进行库存解锁的操作,来确保业务异常或者订单过期时库存会被可靠解锁
编写队列、交换机,绑定关系
容器中的 Binding、Queue、Exchange 都会自动创建(RabbitMQ没有的情况)
RabbitMQ只要有,@Bean声明的属性发生变化也不会覆盖
@Configuration
public class MyMQConfig {
//@Bean Binding, Queue, Exchange
/**
* 延时队列
* @Bean注解 可以将 容器中的 Binding, Queue, Exchange 都会自动创建(RabbitMQ没有的情况下)
* RabbitMQ 中只要有, @Bean声明属性发生变化也不会覆盖
* @return
*/
@Bean
public Queue orderDelayQueue(){
Map<String, Object> arguments = new HashMap<>();
/**
* x-dead-letter-exchange: order-event-exchange
* x-dead-letter-routing-key: order
* x-message-ttl: 60000
*/
//死信交换机
arguments.put("x-dead-letter-exchange","order-event-exchange");
//死信路由键
arguments.put("x-dead-letter-routing-key","order.release.order");
// 消息过期时间 1分钟
arguments.put("x-message-ttl",60000);
//String name--- 队列名字, boolean durable ---是否持久化, boolean exclusive---是否排他,
// boolean autoDelete---是否自动删除, Map arguments--属性map
Queue queue = new Queue("order.delay.queue", true, false, false, arguments);
return queue;
}
/**
* 普通队列
*/
@Bean
public Queue orderReleaseOrderQueue(){
Queue queue = new Queue("order.release.order.queue", true, false, false);
return queue;
}
@Bean
public Exchange orderEventExchange(){
//String name, boolean durable, boolean autoDelete, Map arguments
return new TopicExchange("order-event-exchange", // name
true,// durable
false); // autoDelete
// 还有一个参数是Map arguments
}
/**
* 创建订单的binding
*/
@Bean
public Binding orderCreateOrderBinding(){
//String destination, DestinationType destinationType, String exchange, String routingKey,
// Map arguments
return new Binding("order.delay.queue",
Binding.DestinationType.QUEUE,
"order-event-exchange",
"order.create.order",
null);
}
@Bean
public Binding orderReleaseOrderBinding(){
return new Binding("order.release.order.queue",
Binding.DestinationType.QUEUE,
"order-event-exchange",
"order.release.order",
null);
}
}
监听关单事件
MyMQConfig
/**
* 模拟订单1分钟过期后变成死信,然后控制台打印关闭订单
*/
@RabbitListener(queues = "order.release.order.queue")
public void listener(OrderEntity entity, Channel channel, Message message) throws IOException {
System.out.println("收到过期的订单消息:准备关闭订单" + entity.getOrderSn());
channel.basicAck(message.getMessageProperties().getDeliveryTag(),false);
}
模拟订单完成
HelloController
@Autowired
RabbitTemplate rabbitTemplate;
@ResponseBody
@GetMapping("/test/createOrder")
public String testCreateOrder(){
//订单下单成功
OrderEntity entity = new OrderEntity();
entity.setOrderSn(UUID.randomUUID().toString());
entity.setModifyTime(new Date());
//给MQ发送消息
rabbitTemplate.convertAndSend("order-event-exchange","order.create.order",entity);
return "ok";
}
1分钟后:控制台打印
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6XHDY4OX-1672324453466)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233559819-488181952.png)]
什么是熔断
A 服务调用B 服务的某个功能,由于网络不稳定问题,或者B 服务卡机,导致功能时间超长。如果这样子的次数太多。我们就可以直接将B 断路了(A 不再请求B 接口),凡是调用B 的直接返回降级数据,不必等待B 的超长执行。这样B 的故障问题,就不会级联影响到A。
什么是降级
整个网站处于流量高峰期,服务器压力剧增,根据当前业务情况及流量,对一些服务和页面进行有策略的降级[停止服务,所有的调用直接返回降级数据]。以此缓解服务器资源的的压力,以保证核心业务的正常运行,同时也保持了客户和大部分客户的得到正确的相应。
异同:
相同点:
1、为了保证集群大部分服务的可用性和可靠性,防止崩溃,牺牲小我2、用户最终都是体验到某个功能不可用
不同点:
1、熔断是被调用方故障,触发的系统主动规则2、降级是基于全局考虑,停止一些正常服务,释放资源
什么是限流
对打入服务的请求流量进行控制,使服务能够承担不超过自己能力的流量压力。
官方文档:https://github.com/alibaba/Sentinel/wiki/%E4%BB%8B%E7%BB%8D
项目地址:https://github.com/alibaba/Sentinel
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,
从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
Sentinel 具有以下特征:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VfMrJNsG-1672324453466)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233559481-1315297763.png)]
Sentinel 分为两个部分:
Sentinel 基本概念
资源是Sentinel 的关键概念。它可以是Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。
**只要通过Sentinel API 定义的代码,就是资源,能够被Sentinel 保护起来。**大部分情况下,
可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规
则。所有规则可以动态实时调整。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3CMDH0m3-1672324453467)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233558497-1360732651.png)]
相关文档:https://github.com/alibaba/Sentinel/wiki/%E4%B8%BB%E9%A1%B5
Spring Boot/Spring Cloud整合 Sentinel
下面先在秒杀服务中整合测试使用sentinel。
①导入依赖【公共服务下】
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
dependency>
② 配置
秒杀服务
# sentinel有关配置
#可视化界面控制台
spring.cloud.sentinel.transport.dashboard=localhost:8333
#微服务和控制台之间传输数据的服务传输的端口号:默认8719
spring.cloud.sentinel.transport.port=8719
③下载并启动 sentinel控制台。
通过引入 的 sentinel依赖版本:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D1qut8ZE-1672324453467)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233557497-475930721.png)]
使用 sentinel 1.6.3版本的控制台。并启动。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jLSCRbjj-1672324453467)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233557193-1248319353.png)]
④使用 http://seckill.gulimall.com/currentSeckillSkus
请求测试。
因为sentinel 控制台启用的是懒加载方式,所以我们需要先发送请求,控制台才会显示。
发送一次请求之后,控制台显示。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HRrwgJPw-1672324453467)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233556838-594463272.png)]
有两个地方可以编写:第一个:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dkBqzUWB-1672324453468)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233556335-148600113.png)]
第二个:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aUfyAFXQ-1672324453468)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233555759-399811021.png)]
编写规则:每秒发送一次请求。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GSksnEJK-1672324453468)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233555216-1579628493.png)]
如果一秒内多次点击:报错。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-l41aRyHQ-1672324453468)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233554827-1674966006.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-D2VwJasF-1672324453469)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233554463-2094008250.png)]
引入依赖:
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-actuatorartifactId>
dependency>
配置:
#暴露web所有节点
management.endpoints.web.exposure.include=*
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gYNwpnXg-1672324453469)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233553934-230939824.png)]
公共服务 的 BizCodeEnume 添加错误码:
TOO_MANY_REQUEST(10002,"请求流量过大")
秒杀服务编写配置类:
@Configuration
public class SeckillSentinelConfig {
public SeckillSentinelConfig(){
WebCallbackManager.setUrlBlockHandler(new UrlBlockHandler() {
@Override
public void blocked(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, BlockException e) throws IOException {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(), BizCodeEnume.TOO_MANY_REQUEST.getMsg());
httpServletResponse.setCharacterEncoding("UTF-8");//设置字符编码
httpServletResponse.setContentType("application/json");//文本内容使用JSON
httpServletResponse.getWriter().write(JSON.toJSONString(error));
}
});
}
}
测试错误提示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BgDv4uQu-1672324453469)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233553541-294042934.png)]
接下来我们把全服务都引入 actuator统计审计信息
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-actuatorartifactId>
dependency>
配置:
# sentinel有关配置
#可视化界面控制台
spring.cloud.sentinel.transport.dashboard=localhost:8333
#暴露web所有节点
management.endpoints.web.exposure.include=*
出现问题:order 服务提示 循环依赖问题:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gyPHejPI-1672324453470)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233553209-80278298.png)]
解决:
订单服务的 MyRabbitConfig
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wdOFjpVq-1672324453470)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233552797-143894189.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-P1R7VbMM-1672324453470)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233552251-1408303204.png)]
将商城 业务测试一遍,控制台效果:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qKvp1ipC-1672324453470)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233551770-224523389.png)]
每个微服务都有图表信息:监控数据了。
具体文档参考:流量控制
参考文档
* 4、使用Sentinel来保护feign远程调用:熔断; * 1)、调用方的熔断保护:feign.sentinel.enabled=true * 2)、调用方手动指定远程服务的降级策略。远程服务被降级处理。触发我们的熔断回调方法 * 3)、超大流量的时候,必须牺牲一些远程服务。在服务的提供方(远程服务)指定降级策略; * 提供方是在运行,但是不运行自己的业务逻辑,返回的是默认的降级数据(限流的数据)。
给 商品服务加入以下配置
#开启远程熔断保护
feign.sentinel.enabled=true
测试商品服务和秒杀服务,这里商品服务作为调用方,秒杀服务作为提供方,商品服务远程调用 秒杀服务的这个请求:GET:http://gulimall-seckill/sku/seckill/{skuId}
①这里测试调用方的熔断保护
给 商品服务的秒杀远程接口编写一个 回调实现。
在降级类中实现对应的
feign接口
,并重写降级方法
@Slf4j
@Component
public class SeckillFeignServiceFallBack implements SeckillFeignService {
@Override
public R getSkuSeckillInfo(Long skuId) {
log.info("熔断方法调用...getSkuSeckillInfo");
return R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(),BizCodeEnume.TOO_MANY_REQUEST.getMsg());
}
}
feign的降级,在远程调用的类配置限流处理规则
在@FeignClient
设置fallback
属性
@FeignClient(value = "gulimall-seckill",fallback = SeckillFeignServiceFallBack.class)
public interface SeckillFeignService {
@GetMapping("/sku/seckill/{skuId}")
R getSkuSeckillInfo(@PathVariable("skuId") Long skuId);
}
效果:当秒杀服务停止后,商品服务如果调用秒杀服务,则直接返回编写的降级方法,返回错误状态码。
②测试 调用方手动降级远程服务。
在 商品服务的链路中,对需要调用的远程秒杀服务请求做降级。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qUTYulnc-1672324453471)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233550834-339333104.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sYqd6hlb-1672324453471)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233550019-1945244612.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VkPplvnO-1672324453471)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233549387-455084004.png)]
上面的降级表示:当 1秒内点击调用该请求的次数超过5次,然后如果响应时间超过我们设置 的 1ms,在我们设置的 10s时间窗口内,调用该方法都会自动熔断。
**③ 测试服务提供方手动降级:**比如我们在网站流量很大的时候,可以在后台对一些不重要的服务做 降级策略,但是我们一般不会对 服务的提供方做降级策略。这里我们只是测试一下。
给秒杀服务的 http://seckill.gulimall.com/currentSeckillSkus
请求做降级处理,
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-tAihhsXE-1672324453472)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233547357-503421015.png)]
效果就是:提供方是在运行,但是不运行自己的业务逻辑,返回的是默认的降级数据(限流的数据)。
调用方:叫熔断数据:调不过来了,熔断;
手动给业务方法降级:叫降级数据。
注意概念的区分。
因为 给调用方手动降级也是很方便的,那就给全服务都开启sentinel的feign代理功能。【网关服务不要引入,否则报错】
feign.sentinel.enabled=true
此外,我们给全服务都加上 我们自己配置的 sentinel 错误数据。
@Configuration
public class SeckillSentinelConfig {
public SeckillSentinelConfig(){
WebCallbackManager.setUrlBlockHandler(new UrlBlockHandler() {
@Override
public void blocked(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, BlockException e) throws IOException {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(), BizCodeEnume.TOO_MANY_REQUEST.getMsg());
httpServletResponse.setCharacterEncoding("UTF-8");//设置字符编码
httpServletResponse.setContentType("application/json");//文本内容使用JSON
httpServletResponse.getWriter().write(JSON.toJSONString(error));
}
});
}
}
这样我们全服务如果被sentinel限流或者降级之后,返回的都是我们自己设置的JSON串。
我们定义资源主要使用的方式有:
①主流框架的默认适配
②抛出异常的方式定义资源
③注解方式定义资源
之前使用的是框架的默认适配,现在我们介绍 后面两种常用的方式。
* 5、自定义受保护的资源 * 1)、try (Entry entry = SphU.entry("seckillSkus")) { * //业务逻辑 * }catch(Exception e){ * * } * * 2)、基于注解。 * @SentinelResource(value = "getCurrentSeckillSkusResource",blockHandler = "blockHandler") * * 无论是1,2方式一定要配置被限流以后的默认返回。 * url请求可以设置统一返回:SeckillSentinelConfig 即:每一个自定义的资源需要单独的设置限流返回数据; 而所有的url请求则不用,因为会被自动扫描到,而且我们又自己编写了一个处理限流的类。
抛出异常的方式定义资源
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VlYDoeXX-1672324453472)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233546817-430146987.png)]
以秒杀服务为例,修改一段代码测试:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XEmqLkPG-1672324453472)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233546017-1773988194.png)]
可以为我们自定义的资源进行流控规则配置。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-rMIkbIf2-1672324453472)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233545189-1522347734.png)]
一秒内多次访问,效果:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zDYR8pF9-1672324453472)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233544746-860155748.png)]
此外,还可以使用注解的方式进行资源的自定义,不过没有上面这种方式方便。
使用注解:
Sentinel 支持通过
@SentinelResource
注解定义资源并配置blockHandler
和fallback
函数来进行限流之后的处理。[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NSj09wUN-1672324453473)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233544379-1946206099.png)]
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bbcJHtii-1672324453473)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233543830-2064652078.png)]
效果展示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3mAGWj9v-1672324453473)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233543281-2104323731.png)]
可以看到 两个资源都显示了。配置流控规则:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EVTVhqyR-1672324453473)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233542808-1674494830.png)]
一秒内多次发送请求:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uRX9zmcO-1672324453473)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233542292-1342098493.png)]
ps:避坑指南:这里之前全服务引入 sentinel 开启对 feign的管理之后,网关服务启动报错,所以将 网关服务中的这一段配置注释掉。
feign.sentinel.enabled=true
参考文档:https://github.com/alibaba/Sentinel/wiki/%E7%BD%91%E5%85%B3%E9%99%90%E6%B5%81
①网关服务引入依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-alibaba-sentinel-gatewayartifactId>
<version>2.1.0.RELEASEversion>
dependency>
测试:这里需要使用 1.7.1版本的sentinel控制台,这样才能看到效果。
随便测试一个请求:http://seckill.gulimall.com/currentSeckillSkus
可以看到网关这里就有了相应的簇点链路:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5YjprwI3-1672324453474)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233541841-2009435760.png)]
②对秒杀服务做网关层面的流控规则配置:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8i4IZgOF-1672324453474)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233541338-1259511229.png)]
测试一秒内多次请求:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-kvfdHR7y-1672324453474)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233540751-834672294.png)]
例如,我们对秒杀服务进行更加精确的流控管理:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CWKFT5v7-1672324453474)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233540349-1339333882.png)]
使用postman测试:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f7sPZzzq-1672324453474)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233539656-54052412.png)]
返回错误信息。
③自定义网关流控返回。
网关服务编写配置类:
@Configuration
public class SentinelGatewayConfig {
// TODO 响应式编程
public SentinelGatewayConfig() {
GatewayCallbackManager.setBlockHandler(new BlockRequestHandler() {
//网关限流了请求,就会调用此回调 Mono Flux
@Override
public Mono<ServerResponse> handleRequest(ServerWebExchange serverWebExchange, Throwable throwable) {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(), BizCodeEnume.TOO_MANY_REQUEST.getMsg());
String errJson = JSON.toJSONString(error);
Mono<ServerResponse> body = ServerResponse.ok().body(Mono.just(errJson), String.class);
return body;
}
});
}
}
流控规则配置:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-X3VgEph5-1672324453475)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233538930-600698881.png)]
postman测试:
1秒内多次发送请求:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fGMzLxEZ-1672324453475)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233538079-2035620890.png)]
为什么用
微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与,参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。
链路追踪组件有Google 的Dapper,Twitter 的Zipkin,以及阿里的Eagleeye (鹰眼)等,它们都是非常优秀的链路追踪开源组件。
基本术语
Span(跨度):基本工作单元,发送一个远程调度任务就会产生一个Span,Span 是一
个64 位ID 唯一标识的,Trace 是用另一个64 位ID 唯一标识的,Span 还有其他数据信
息,比如摘要、时间戳事件、Span 的ID、以及进度ID。
Trace(跟踪):一系列Span 组成的一个树状结构。请求一个微服务系统的API 接口,
这个API 接口,需要调用多个微服务,调用每个微服务都会产生一个新的Span,所有
由这个请求产生的Span 组成了这个Trace。
Annotation(标注):用来及时记录一个事件的,一些核心注解用来定义一个请求的开
始和结束。这些注解包括以下:
cs - Client Sent -客户端发送一个请求,这个注解描述了这个Span 的开始
sr - Server Received -服务端获得请求并准备开始处理它,如果将其sr 减去cs 时间戳
便可得到网络传输的时间。
ss - Server Sent (服务端发送响应)–该注解表明请求处理的完成(当请求返回客户
端),如果ss 的时间戳减去sr 时间戳,就可以得到服务器请求的时间。
cr - Client Received (客户端接收响应)-此时Span 的结束,如果cr 的时间戳减去
cs 时间戳便可以得到整个请求所消耗的时间。
官方文档:
https://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.1.3.RELEASE/single/spring-cloud-sleuth.html
如果服务调用顺序如下
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-U9kVqZEj-1672324453475)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233537700-2005419532.png)]
那么用以上概念完整的表示出来如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uCRxRv2d-1672324453475)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233537193-704248180.png)]
Span 之间的父子关系如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y50x3vX8-1672324453476)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233535893-561501567.png)]
①引入依赖:(公共服务)
<dependency>
<groupId>org.springframework.cloudgroupId>
<artifactId>spring-cloud-starter-sleuthartifactId>
dependency>
②打开debug 日志
这里以商品服务为例:
#开启debug日志
logging.level.org.springframework.cloud.openfeign=debug
logging.level.org.springframework.cloud.sleuth=debug
③商品服务详情页刷新
控制台显示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Hu8I2aJI-1672324453476)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233535413-1174999215.png)]
发起一次远程调用,观察控制台
DEBUG [user-service,541450f08573fff5,541450f08573fff5,false]
user-service:服务名
541450f08573fff5:是TranceId,一条链路中,只有一个TranceId
541450f08573fff5:是spanId,链路中的基本工作单元id
false:表示是否将数据输出到其他服务,true 则会把信息输出到其他可视化的服务上观察
zipkin
可视化观察通过Sleuth 产生的调用链监控信息,可以得知微服务之间的调用链路,但监控信息只输出到控制台不方便查看。我们需要一个图形化的工具-zipkin。Zipkin 是Twitter 开源的分布式跟踪系统,主要用来收集系统的时序数据,从而追踪系统的调用问题。zipkin 官网地址如下:
https://zipkin.io/
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-TNaYlcEE-1672324453476)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233534866-560859563.png)]
①docker 安装zipkin 服务器
docker run -d -p 9411:9411 openzipkin/zipkin
②导入
<dependency>
<groupId>org.springframework.cloudgroupId>
<artifactId>spring-cloud-starter-zipkinartifactId>
dependency>
zipkin 依赖也同时包含了sleuth,可以省略sleuth 的引用【公共服务引入该依赖,使得全服务通用。如果启动报错,就单独给每个服务引入。】
③添加zipkin 相关配置
spring:
application:
name: user-service
zipkin:
base-url: http://192.168.56.10:9411/ # zipkin 服务器的地址
# 关闭服务发现,否则Spring Cloud 会把zipkin 的url 当做服务名称
discoveryClientEnabled: false
sender:
type: web # 设置使用http 的方式传输数据
sleuth:
sampler:
probability: 1 # 设置抽样采集率为100%,默认为0.1,即10%
或者 使用 properties方式配置【全服务配置】
#服务追踪
# zipkin 服务器的地址
spring.zipkin.base-url=http://192.168.56.10:9411/
# 关闭服务发现,否则Spring Cloud 会把zipkin 的url 当做服务名称
spring.zipkin.discovery-client-enabled=false
# 设置使用http 的方式传输数据
spring.zipkin.sender.type=web
# 设置抽样采集率为100%,默认为0.1,即10%
spring.sleuth.sampler.probability=1
④发送远程请求,测试zipkin。
服务调用链追踪信息统计
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xvLVZgEm-1672324453477)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233533641-925360424.png)]
其中可以看到请求的方式,请求时间,异步等信息
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3QlH2OE6-1672324453477)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233532441-1716416254.png)]
此外,还可以查询依赖。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zN0v1TAg-1672324453477)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233531590-238821932.png)]
5. Zipkin 数据持久化
Zipkin 默认是将监控数据存储在内存的,如果Zipkin 挂掉或重启的话,那么监控数据就会丢失。所以如果想要搭建生产可用的Zipkin,就需要实现监控数据的持久化。而想要实现数据持久化,自然就是得将数据存储至数据库。好在Zipkin 支持将数据存储至:
Zipkin 数据持久化相关的官方文档地址如下:
https://github.com/openzipkin/zipkin#storage-component
Zipkin 支持的这几种存储方式中,内存显然是不适用于生产的,这一点开始也说了。而使用MySQL 的话,当数据量大时,查询较为缓慢,也不建议使用。Twitter 官方使用的是Cassandra作为Zipkin 的存储数据库,但国内大规模用Cassandra 的公司较少,而且Cassandra 相关文档也不多。
综上,故采用Elasticsearch 是个比较好的选择,关于使用Elasticsearch 作为Zipkin 的存储数
据库的官方文档如下:
elasticsearch-storage:
https://github.com/openzipkin/zipkin/tree/master/zipkin-server#elasticsearch-storage
zipkin-storage/elasticsearch
https://github.com/openzipkin/zipkin/tree/master/zipkin-storage/elasticsearch
通过docker 的方式
docker run --env STORAGE_TYPE=elasticsearch --env ES_HOSTS=192.168.56.10:9200
openzipkin/zipkin-dependencies
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VfE84a2W-1672324453477)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233530901-1984094161.png)]
使用es 时Zipkin Dependencies 支持的环境变量
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vW4UjSNe-1672324453478)(https://img2023.cnblogs.com/blog/3019773/202212/3019773-20221228233529484-856258531.png)]
“UTF-8”);//设置字符编码
httpServletResponse.setContentType(“application/json”);//文本内容使用JSON
httpServletResponse.getWriter().write(JSON.toJSONString(error));
}
});
}
}
这样我们全服务如果被sentinel限流或者降级之后,返回的都是我们自己设置的JSON串。
----
- 5、自定义受保护的资源
我们定义资源主要使用的方式有:
①主流框架的默认适配
②抛出异常的方式定义资源
③注解方式定义资源
之前使用的是框架的默认适配,现在我们介绍 后面两种常用的方式。
> ```
> * 5、自定义受保护的资源
> * 1)、try (Entry entry = SphU.entry("seckillSkus")) {
> * //业务逻辑
> * }catch(Exception e){
> *
> * }
> *
> * 2)、基于注解。
> * @SentinelResource(value = "getCurrentSeckillSkusResource",blockHandler = "blockHandler")
> *
> * 无论是1,2方式一定要配置被限流以后的默认返回。
> * url请求可以设置统一返回:SeckillSentinelConfig
> 即:每一个自定义的资源需要单独的设置限流返回数据;
> 而所有的url请求则不用,因为会被自动扫描到,而且我们又自己编写了一个处理限流的类。
> ```
**抛出异常的方式定义资源**
[外链图片转存中...(img-VlYDoeXX-1672324453472)]
以秒杀服务为例,修改一段代码测试:
[外链图片转存中...(img-XEmqLkPG-1672324453472)]
可以为我们自定义的资源进行流控规则配置。
[外链图片转存中...(img-rMIkbIf2-1672324453472)]
一秒内多次访问,效果:
[外链图片转存中...(img-zDYR8pF9-1672324453472)]
此外,还可以使用注解的方式进行资源的自定义,不过没有上面这种方式方便。
**使用注解:**
> Sentinel 支持通过 `@SentinelResource` 注解定义资源并配置 `blockHandler` 和 `fallback` 函数来进行限流之后的处理。
>
> [外链图片转存中...(img-NSj09wUN-1672324453473)]
[外链图片转存中...(img-bbcJHtii-1672324453473)]
效果展示:
[外链图片转存中...(img-3mAGWj9v-1672324453473)]
可以看到 两个资源都显示了。配置流控规则:
[外链图片转存中...(img-EVTVhqyR-1672324453473)]
一秒内多次发送请求:
[外链图片转存中...(img-uRX9zmcO-1672324453473)]
---
- 6、网关流控
> ps:避坑指南:这里之前全服务引入 sentinel 开启对 feign的管理之后,网关服务启动报错,所以将 网关服务中的这一段配置注释掉。
```properties
feign.sentinel.enabled=true
参考文档:https://github.com/alibaba/Sentinel/wiki/%E7%BD%91%E5%85%B3%E9%99%90%E6%B5%81
①网关服务引入依赖:
<dependency>
<groupId>com.alibaba.cloudgroupId>
<artifactId>spring-cloud-alibaba-sentinel-gatewayartifactId>
<version>2.1.0.RELEASEversion>
dependency>
测试:这里需要使用 1.7.1版本的sentinel控制台,这样才能看到效果。
随便测试一个请求:http://seckill.gulimall.com/currentSeckillSkus
可以看到网关这里就有了相应的簇点链路:
[外链图片转存中…(img-5YjprwI3-1672324453474)]
②对秒杀服务做网关层面的流控规则配置:
[外链图片转存中…(img-8i4IZgOF-1672324453474)]
测试一秒内多次请求:
[外链图片转存中…(img-kvfdHR7y-1672324453474)]
例如,我们对秒杀服务进行更加精确的流控管理:
[外链图片转存中…(img-CWKFT5v7-1672324453474)]
使用postman测试:
[外链图片转存中…(img-f7sPZzzq-1672324453474)]
返回错误信息。
③自定义网关流控返回。
网关服务编写配置类:
@Configuration
public class SentinelGatewayConfig {
// TODO 响应式编程
public SentinelGatewayConfig() {
GatewayCallbackManager.setBlockHandler(new BlockRequestHandler() {
//网关限流了请求,就会调用此回调 Mono Flux
@Override
public Mono<ServerResponse> handleRequest(ServerWebExchange serverWebExchange, Throwable throwable) {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(), BizCodeEnume.TOO_MANY_REQUEST.getMsg());
String errJson = JSON.toJSONString(error);
Mono<ServerResponse> body = ServerResponse.ok().body(Mono.just(errJson), String.class);
return body;
}
});
}
}
流控规则配置:
[外链图片转存中…(img-X3VgEph5-1672324453475)]
postman测试:
1秒内多次发送请求:
[外链图片转存中…(img-fGMzLxEZ-1672324453475)]
为什么用
微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与,参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。
链路追踪组件有Google 的Dapper,Twitter 的Zipkin,以及阿里的Eagleeye (鹰眼)等,它们都是非常优秀的链路追踪开源组件。
基本术语
Span(跨度):基本工作单元,发送一个远程调度任务就会产生一个Span,Span 是一
个64 位ID 唯一标识的,Trace 是用另一个64 位ID 唯一标识的,Span 还有其他数据信
息,比如摘要、时间戳事件、Span 的ID、以及进度ID。
Trace(跟踪):一系列Span 组成的一个树状结构。请求一个微服务系统的API 接口,
这个API 接口,需要调用多个微服务,调用每个微服务都会产生一个新的Span,所有
由这个请求产生的Span 组成了这个Trace。
Annotation(标注):用来及时记录一个事件的,一些核心注解用来定义一个请求的开
始和结束。这些注解包括以下:
cs - Client Sent -客户端发送一个请求,这个注解描述了这个Span 的开始
sr - Server Received -服务端获得请求并准备开始处理它,如果将其sr 减去cs 时间戳
便可得到网络传输的时间。
ss - Server Sent (服务端发送响应)–该注解表明请求处理的完成(当请求返回客户
端),如果ss 的时间戳减去sr 时间戳,就可以得到服务器请求的时间。
cr - Client Received (客户端接收响应)-此时Span 的结束,如果cr 的时间戳减去
cs 时间戳便可以得到整个请求所消耗的时间。
官方文档:
https://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.1.3.RELEASE/single/spring-cloud-sleuth.html
如果服务调用顺序如下
[外链图片转存中…(img-U9kVqZEj-1672324453475)]
那么用以上概念完整的表示出来如下:
[外链图片转存中…(img-uCRxRv2d-1672324453475)]
Span 之间的父子关系如下:
[外链图片转存中…(img-y50x3vX8-1672324453476)]
①引入依赖:(公共服务)
<dependency>
<groupId>org.springframework.cloudgroupId>
<artifactId>spring-cloud-starter-sleuthartifactId>
dependency>
②打开debug 日志
这里以商品服务为例:
#开启debug日志
logging.level.org.springframework.cloud.openfeign=debug
logging.level.org.springframework.cloud.sleuth=debug
③商品服务详情页刷新
控制台显示:
[外链图片转存中…(img-Hu8I2aJI-1672324453476)]
发起一次远程调用,观察控制台
DEBUG [user-service,541450f08573fff5,541450f08573fff5,false]
user-service:服务名
541450f08573fff5:是TranceId,一条链路中,只有一个TranceId
541450f08573fff5:是spanId,链路中的基本工作单元id
false:表示是否将数据输出到其他服务,true 则会把信息输出到其他可视化的服务上观察
zipkin
可视化观察通过Sleuth 产生的调用链监控信息,可以得知微服务之间的调用链路,但监控信息只输出到控制台不方便查看。我们需要一个图形化的工具-zipkin。Zipkin 是Twitter 开源的分布式跟踪系统,主要用来收集系统的时序数据,从而追踪系统的调用问题。zipkin 官网地址如下:
https://zipkin.io/
[外链图片转存中…(img-TNaYlcEE-1672324453476)]
①docker 安装zipkin 服务器
docker run -d -p 9411:9411 openzipkin/zipkin
②导入
<dependency>
<groupId>org.springframework.cloudgroupId>
<artifactId>spring-cloud-starter-zipkinartifactId>
dependency>
zipkin 依赖也同时包含了sleuth,可以省略sleuth 的引用【公共服务引入该依赖,使得全服务通用。如果启动报错,就单独给每个服务引入。】
③添加zipkin 相关配置
spring:
application:
name: user-service
zipkin:
base-url: http://192.168.56.10:9411/ # zipkin 服务器的地址
# 关闭服务发现,否则Spring Cloud 会把zipkin 的url 当做服务名称
discoveryClientEnabled: false
sender:
type: web # 设置使用http 的方式传输数据
sleuth:
sampler:
probability: 1 # 设置抽样采集率为100%,默认为0.1,即10%
或者 使用 properties方式配置【全服务配置】
#服务追踪
# zipkin 服务器的地址
spring.zipkin.base-url=http://192.168.56.10:9411/
# 关闭服务发现,否则Spring Cloud 会把zipkin 的url 当做服务名称
spring.zipkin.discovery-client-enabled=false
# 设置使用http 的方式传输数据
spring.zipkin.sender.type=web
# 设置抽样采集率为100%,默认为0.1,即10%
spring.sleuth.sampler.probability=1
④发送远程请求,测试zipkin。
服务调用链追踪信息统计
[外链图片转存中…(img-xvLVZgEm-1672324453477)]
其中可以看到请求的方式,请求时间,异步等信息
[外链图片转存中…(img-3QlH2OE6-1672324453477)]
此外,还可以查询依赖。
[外链图片转存中…(img-zN0v1TAg-1672324453477)]
5. Zipkin 数据持久化
Zipkin 默认是将监控数据存储在内存的,如果Zipkin 挂掉或重启的话,那么监控数据就会丢失。所以如果想要搭建生产可用的Zipkin,就需要实现监控数据的持久化。而想要实现数据持久化,自然就是得将数据存储至数据库。好在Zipkin 支持将数据存储至:
Zipkin 数据持久化相关的官方文档地址如下:
https://github.com/openzipkin/zipkin#storage-component
Zipkin 支持的这几种存储方式中,内存显然是不适用于生产的,这一点开始也说了。而使用MySQL 的话,当数据量大时,查询较为缓慢,也不建议使用。Twitter 官方使用的是Cassandra作为Zipkin 的存储数据库,但国内大规模用Cassandra 的公司较少,而且Cassandra 相关文档也不多。
综上,故采用Elasticsearch 是个比较好的选择,关于使用Elasticsearch 作为Zipkin 的存储数
据库的官方文档如下:
elasticsearch-storage:
https://github.com/openzipkin/zipkin/tree/master/zipkin-server#elasticsearch-storage
zipkin-storage/elasticsearch
https://github.com/openzipkin/zipkin/tree/master/zipkin-storage/elasticsearch
通过docker 的方式
docker run --env STORAGE_TYPE=elasticsearch --env ES_HOSTS=192.168.56.10:9200
openzipkin/zipkin-dependencies
[外链图片转存中…(img-VfE84a2W-1672324453477)]
使用es 时Zipkin Dependencies 支持的环境变量
[外链图片转存中…(img-vW4UjSNe-1672324453478)]