Pytorch实战2——卷积神经网络对MNIST数据集分类

目录

一、卷积神经网络简介 

 二、CNN编程对mnist数据集分类

 1. 导入相关的模块

 2. 准备数据集,训练、测试数据集 

 3. 设计模型 

 4. 构建损失函数和优化器

 5. 训练 

 6. 测试

 7.  训练结果:


 

一、卷积神经网络简介 

Pytorch实战2——卷积神经网络对MNIST数据集分类_第1张图片 输入图像n*5*5   经过  1个 n*3*3的卷积核,得到 1*3*3的输出

 

Pytorch实战2——卷积神经网络对MNIST数据集分类_第2张图片 

 输入n*wi*hi的输入 经过 m个n*3*3的卷积核,得到 m*wo*ho的输出,m个特征图按照channel的方向拼接起来。

 二、CNN编程对mnist数据集分类

 1. 导入相关的模块

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

2. 准备数据集,训练、测试数据集 

batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)
train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)
test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)

3. 设计模型 

#卷积神经网络模型,卷积、池化、激活,卷积、池化、激活,reshape、全连接输出
class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()   
            self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)#输入图像通道数,卷积输出的通道数,卷积核尺寸,默认stride = 1
            self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)#填充层默认 padding=0
            self.pooling = torch.nn.MaxPool2d(2)
            # batch*20*10*10
            self.fc = torch.nn.Linear(320, 10)
        def forward(self, x):
            # Flatten data from (n, 1, 28, 28) to (n, 784)
            batch_size = x.size(0) #x是4维的,size(0)表示batch_size
            #输入 batch*1*28*28
            x = F.relu(self.poo ling(self.conv1(x)))# 输出 batch*10*12*12
            x = F.relu(self.pooling(self.conv2(x)))# batch*20*4*4
            x = x.view(batch_size, -1) # flatten, -1表示自动计算列数,行数固定为batch_size
            # x batch*320            #(x.size(0),-1)将tensor的结构转换为了(batchsize, channels*w*h),即将(channels,w,h)拉直
            x = self.fc(x)     #最后输出不做激活,在交叉熵损失函数里做了
            return x
model = Net()

 4. 构建损失函数和优化器

#构建损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

5. 训练 

#训练
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0

 6. 测试

#测试
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
#    print(total) # 10000个测试样本
    print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(2):
        train(epoch)
        test()

7.  训练结果:

[1,   300] loss: 0.628
[1,   600] loss: 0.188
[1,   900] loss: 0.147
Accuracy on test set: 96 %
[2,   300] loss: 0.109
[2,   600] loss: 0.094
[2,   900] loss: 0.092
Accuracy on test set: 97 %

 

 

 

 

 

你可能感兴趣的:(Pytorch,cnn,深度学习)