目标:适用不同结构的图的模型
图卷积
注意力机制:可以处理可变大小的输入,专注于输入中最相关的部分来做出决定
所以作者提出了基于注意力机制的方法来完成节点分类任务。其基本思想为:通过关注节点的邻居并遵循self-attention策略来计算图中每个节点的隐藏表征。
输入: h = { h 1 ⃗ , h 2 ⃗ , . . . , h N ⃗ } , h i ⃗ ∈ R F h = \{ \vec{h_1}, \vec{h_2}, ..., \vec{h_N} \}, \vec{h_i} \in \R ^F h={h1,h2,...,hN},hi∈RF
输出: h ′ = { h 1 ′ ⃗ , h 2 ′ ⃗ , . . . , h N ′ ⃗ } , h i ′ ⃗ ∈ R F ′ h' = \{ \vec{h_1'}, \vec{h_2'}, ..., \vec{h_N'} \}, \vec{h_i'} \in \R ^{F'} h′={h1′,h2′,...,hN′},hi′∈RF′
注意力系数 (attention coefficients) 代表节点 j 的特征对节点 i 的重要程度,其计算公式为:
e i j = a ( W h i ⃗ , W h j ⃗ ) e_{ij} = a (W \vec{h_i}, W \vec{h_j} ) eij=a(Whi,Whj)
标准化注意力系数:
α i j = s o f t m a x j ( e i j ) = e x p ( e i j ) ∑ k ∈ N i e x p ( e i k ) \alpha _{ij} = softmax_j(e_{ij})=\frac{exp(e_{ij})}{\sum _{k \in \mathcal{N} _i} exp(e_{ik}) } αij=softmaxj(eij)=∑k∈Niexp(eik)exp(eij)
计算下一层特征:
h ⃗ i ′ = σ ( ∑ j ∈ N i α i j W h ⃗ j ) \vec{h}_i' = \sigma (\sum_{j\in \mathcal{N}_i} \alpha _{ij} W \vec{h}_j ) hi′=σ(j∈Ni∑αijWhj)
使用multi-head attention来让学习过程更稳定:
h ⃗ i ′ = ∥ k = 1 K σ ( ∑ j ∈ N i α i j k W k h ⃗ j ) \vec{h}_i' = \parallel _{k=1}^K \sigma (\sum_{j\in \mathcal{N}_i} \alpha _{ij}^k W ^k\vec{h}_j ) hi′=∥k=1Kσ(j∈Ni∑αijkWkhj)
在最终层 (预测层),连接操作就不再有意义,作者采用了平均的方法,同时将非线性激活函数放在了外面。
h ⃗ i ′ = σ ( 1 K ∑ k = 1 K ∑ j ∈ N i α i j k W k h ⃗ j ) \vec{h}_i' = \sigma ( \frac{1}{K} \sum _{k=1}^K \sum_{j\in \mathcal{N}_i} \alpha _{ij}^k W ^k\vec{h}_j ) hi′=σ(K1k=1∑Kj∈Ni∑αijkWkhj)
本文的实验中,注意力机制 a 是一个单层前反馈神经网络
并且只计算节点 i 自身及其一阶邻居的注意力系数,表达式为:
e i j = a ( W h i ⃗ , W h j ⃗ ) = L e a k y R e L U ( a ⃗ T [ W h i ⃗ ∣ ∣ W h j ⃗ ] ) e_{ij} = a (W \vec{h_i}, W \vec{h_j} ) = LeakyReLU(\vec{a}^T [W \vec{h_i} || W \vec{h_j}] ) eij=a(Whi,Whj)=LeakyReLU(aT[Whi∣∣Whj])
总的公式表示为:
α i j = e x p ( L e a k y R e L U ( a ⃗ T [ W h i ⃗ ∣ ∣ W h j ⃗ ] ) ) ∑ k ∈ N i e x p ( L e a k y R e L U ( a ⃗ T [ W h i ⃗ ∣ ∣ W h k ⃗ ] ) ) \alpha _{ij} = \frac{exp(LeakyReLU(\vec{a}^T [W \vec{h_i} || W \vec{h_j}] ))}{\sum _{k \in \mathcal{N} _i} exp(LeakyReLU(\vec{a}^T [W \vec{h_i} || W \vec{h_k}] )) } αij=∑k∈Niexp(LeakyReLU(aT[Whi∣∣Whk]))exp(LeakyReLU(aT[Whi∣∣Whj]))
优点
缺点
数据集:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wJjMpDyC-1672227079416)(https://s3-us-west-2.amazonaws.com/secure.notion-static.com/e5dfd7d3-9511-434a-9922-fdf3e5978451/Untitled.png)]
实验设置
结果: