RLHF:基于人类反馈(Human Feedback)对语言模型进行强化学习【Reinforcement Learning from Human Feedback】

HuggingFace发表了一篇博客,详细讲解了ChatGPT背后的技术原理——RLHF。

笔者读过之后,觉得讲解的还是蛮清晰的,因此提炼了一下核心脉络,希望给对ChatGPT技术原理感兴趣的小伙伴带来帮助。

此外,文末整理了几篇关于 RLHF 最热门的12篇必读论文,卖萌酱打包好挂在公众号后台了,感兴趣的小伙伴可以在公众号“夕小瑶的卖萌屋”后台回复【1212】领取。

在过去几年里,基于prompt范式的AI生成模型取得了巨大的成功,诞生了不少有意思的AI应用,例如AI写小说,AI写代码,AI画图甚至AI做视频等。

但其实这种生成模型很难训练。以语言模型为例,大多是采用“自回归生成”的方式,通过循环解码的方式来逐字或逐词生成内容。训练时往往简单的基于上下文信息去预测下一个词,然后用交叉熵来计算每个词的loss。显然这种token-level的loss不能很好的从整体输出的层面去指导模型优化方向。

为了能刻画模型输出的整体质量(而不是单个词),人们往往用BLEU或ROUGH等评价指标来刻画模型输出与人类偏好的相近程度,但这也仅仅是在评价的层面,模型在训练的时候是见不到这些人类真实的偏好的。

因此,训练阶段,如果直接用人的偏好(或者说人的反馈)来对模型整体的输出结果计算reward或loss,显然是要比上面传统的“给定上下文,预测下一个词”的损失函数合理的多。基于这个思想,便引出了本文要讨论的对象——RLHF(Reinforcement Learning from Human Feedback):即,使用强化学习的方法,利用人类反馈信号直接优化语言模型

抱抱脸:ChatGPT背后的算法——RLHF | 附12篇RLHF必刷论文_夕小瑶的博客-CSDN博客

从零实现ChatGPT——RLHF技术笔记 - 知乎

Illustrating Reinforcement Learning from Human Feedback (RLHF)

你可能感兴趣的:(强化学习,语言模型,人工智能,自然语言处理)