第五节:作者信息关联-学习笔记

任务说明

  • 学习主题:作者关联(数据建模任务),对论文作者关系进行建模,统计最常出现的作者关系;
  • 学习内容:构建作者关系图,挖掘作者关系
  • 学习成果:论文作者知识图谱、图关系挖掘

数据处理步骤

将作者列表进行处理,并完成统计。具体步骤如下:

  • 将论文第一作者与其他作者(论文非第一作者)构建图;
  • 使用图算法统计图中作者与其他作者的联系;

社交网络分析

图是复杂网络研究中的一个重要概念。Graph是用线来刻画离散事物集合中的每对事物间以某种方式相联系的数学模型。Graph在现实世界中随处可见,如交通运输图、旅游图、流程图等。利用图可以描述现实生活中的许多事物,如用点可以表示交叉口,点之间的连线表示路径,这样就可以轻而易举的描绘出一个交通运输网络。

图类型

  • 无向图,忽略了两节点间边的方向。

  • 指有向图,考虑了边的有向性。

  • 多重无向图,即两个结点之间的边数多于一条,又允许顶点通过同一条边和自己关联。

图统计指标

  • 度:是指和该节点相关联的边的条数,又称关联度。对于有向图,节点的入度 是指进入该节点的边的条数;节点的出度是指从该节点出发的边的条数;

  • 迪杰斯特拉路径:.从一个源点到其它各点的最短路径,可使用迪杰斯特拉算法来求最短路径;

  • 连通图:在一个无向图 G 中,若从顶点i到顶点j有路径相连,则称i和j是连通的。如果 G 是有向图,那么连接i和j的路径中所有的边都必须同向。如果图中任意两点都是连通的,那么图被称作连通图。如果此图是有向图,则称为强连通图。

对于其他图算法,可以在networkx和igraph两个库中找到。

具体代码以及讲解

首先读取我们想要的数据:

# 导入所需的包
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
       'report-no', 'categories', 'license', 'abstract', 'versions',
       'update_date', 'authors_parsed'], count=None):
    '''
    定义读取文件的函数
        path: 文件路径
        columns: 需要选择的列
        count: 读取行数
    '''
    
    data  = []
    with open(path, 'r') as f: 
        for idx, line in enumerate(f): 
            if idx == count:
                break
                
            d = json.loads(line)
            d = {col : d[col] for col in columns}
            data.append(d)

    data = pd.DataFrame(data)
    return data

data = readArxivFile('arxiv-metadata-oai-snapshot.json', 
                     ['id', 'authors_parsed'],
                    200000)

创建作者链接的无向图:

import networkx as nx  #导入NetworkX包

#建立一个空的无向图
G = nx.Graph()

# 只用五篇论文进行构建
for row in data.iloc[:500].itertuples():
    authors = row[2]
    authors = [' '.join(x[:-1]) for x in authors]
    
    # 第一个作者 与 其他作者链接
    for author in authors[1:]:
        G.add_edge(authors[0],author) # 添加节点2,3并链接23节点
# 将作者关系图进行绘制:
nx.draw(G, with_labels=True)
plt.show()   

第五节:作者信息关联-学习笔记_第1张图片

此处运行报错,module ‘matplotlib.pyplot’ has no attribute ‘ishold’

解决方法:

python包安装顺序问题 需要将networkx和matplotlib卸载后,先安装matplotlib,再安装network。

卸载

pip uninstall networkx

pip uninstall matplotlib

安装(注意顺序)

pip install matplotlib

pip install networkx

注:若matplotlib无法通过pip直接下载,需要先在https://pypi.org/project/matplotlib/#files 下载对应版本(系统和python版本都需要对应)的whl文件,然后控制台进入对应文件夹下执行,pip install matplotlib-XXX.whl

try:
    print(nx.dijkstra_path(G, 'Balázs C.', 'Ziambaras Eleni'))
except:
    print('No path')
No path

如果我们500片论文构建图,则可以得到更加完整作者关系,并选择最大联通子图进行绘制,折线图为子图节点度值。

degree_sequence = sorted([d for n, d in G.degree()], reverse=True)
dmax = max(degree_sequence)

plt.loglog(degree_sequence, "b-", marker="o")
plt.title("Degree rank plot")
plt.ylabel("degree")
plt.xlabel("rank")

# draw graph in inset
plt.axes([0.45, 0.45, 0.45, 0.45])
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])

pos = nx.spring_layout(Gcc)
plt.axis("off")
nx.draw_networkx_nodes(Gcc, pos, node_size=20)
nx.draw_networkx_edges(Gcc, pos, alpha=0.4)
plt.show()

第五节:作者信息关联-学习笔记_第2张图片

# networkx的使用 -此处引用网友
import networkx as nx               #导入NetworkX包
import matplotlib.pyplot as plt     #导入绘图包matplotlib
G = nx.Graph()                      #建立一个空的无向图

G.add_node(1)                       #添加一个节点1
G.add_edge(2, 3)                    #添加一条边2-3(隐含着添加了两个节点2、3)
G.add_edge(3, 2)                    #对于无向图,边3-2与边2-3被认为是一条边
G.add_edge(1, 2)
G.add_edge(1, 3)

pos = nx.spring_layout(G)           #该方法为可选,可以通过建立不同布局对图进行布局方面的美化
colors = ['r','r','y']              #每个结点颜色
#colors = [1 2 3]                   #也可以用数字表示,数字与颜色不一一对应

#print G.nodes()                    #输出全部的节点
#print G.edges()                    #输出全部的边
#print G.number_of_edges()          #输出边的数量
#nx.draw_networkx_nodes(G, pos, node_color=colors)  #绘制结点
#nx.draw_networkx_edges(G,pos)      #绘制边
#plt.axis('off')                    #不显示坐标 
#plt.savefig("ba.png")              #输出方式1: 将图像存为一个png格式的图片文件

#绘制网络图G,顶点带标签,        用指定颜色给结点上色, 结点大小
nx.draw(G, with_labels=True, node_color=colors, node_size=200)  
plt.show()                          #输出方式2: 在窗口中显示这幅图像

你可能感兴趣的:(数据挖掘,python,大数据,机器学习,人工智能,数据分析)