- 【机器学习&深度学习】适合微调的模型选型指南
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、不同规模模型微调适用性二、微调技术类型对显存的影响三、选择建议(根据你的硬件)四、实际模型推荐五、不同模型适合人群六、推荐几个“非常适合微调”的模型七、推荐使用的微调技术八、场景选择示例场景1:智能客服(中文)场景2:法律问答(中文RAG)场景3:医学问答/健康咨询场景4:AI写作助手(中英文)场景5:代码补全/AI编程助手对比总结表九、不同参数模型特点9.1参数规模vs能力9.2微型模型
- 板凳-------Mysql cookbook学习 (十--7)
第8章:生成摘要8.0引言mysql>select*fromstatesorderbyname;+----------------+--------+------------+----------+|name|abbrev|statehood|pop|+----------------+--------+------------+----------+|Alabama|AL|1819-12-14|
- 板凳-------Mysql cookbook学习 (十--15)
fengye207161
mysql学习android
10.31编写时间处理工具sql--创建测试数据--插入所有原始数据,使用STR_TO_DATE函数处理不同格式的日期INSERTINTOdate_test(event_name,event_date)VALUES('Fred',STR_TO_DATE('04-13-70','%m-%d-%y')),('Mort',STR_TO_DATE('09-3-69','%m-%d-%y')),('Alic
- Lynda.com软件教程英文字幕集锦
mater lai
本文还有配套的精品资源,点击获取简介:Lynda.com平台上的英文字幕文件汇集了从基础到高级的各类软件教程,涵盖AutodeskMaya、AdobeIllustrator、MicrosoftPowerPoint、AdobePhotoshop、Windows7操作系统、3dsMax、AutoCAD以及AdobeAfterEffects的使用和技巧。这些字幕文件为学习者提供了精准理解软件操作和技术术
- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- 【机器学习&深度学习】本地部署 vs API调用:关键看显存!
一叶千舟
深度学习【应用必备常识】深度学习人工智能
目录一、本地部署VSAPI调用1.模型运行方式2.性能与速度3.成本4.隐私与安全5.何时选择哪种方式?二、为什么推荐本地部署?1️⃣零依赖网络和外部服务,更可靠稳定2️⃣无调用次数限制,更适合高频或批量推理3️⃣避免长期API费用,节省成本4️⃣保护用户隐私和数据安全5️⃣可自定义、深度优化6️⃣加载一次即可复用,低延迟高性能7️⃣离线可用(重要!)三、适合本地部署的情况四、本地部署条件4.1模
- 深度学习 vs 传统机器学习:哪个更适合你的项目?
AI大模型应用之禅
深度学习机器学习人工智能ai
深度学习vs传统机器学习:哪个更适合你的项目?关键词:深度学习、传统机器学习、特征工程、数据量、计算资源、项目选择、算法对比摘要:本文将用"炒菜"和"拼图"等生活案例,从核心原理、适用场景、资源需求等维度对比深度学习与传统机器学习。通过具体代码示例和真实项目场景分析,帮助开发者和企业决策者快速判断:你的项目该选深度学习还是传统机器学习?背景介绍目的和范围随着AI技术普及,"该用深度学习还是传统机器
- Python 机器学习实战:泰坦尼克号生还者预测 (从数据探索到模型构建)
程序员阿超的博客
Pythonpython机器学习开发语言泰坦尼克号KaggleScikit-learn实战教程
引言:挑战介绍泰坦尼克号的沉没是历史上最著名的海难之一。除了其悲剧色彩,它还为数据科学提供了一个经典且引人入胜的入门项目。Kaggle平台上的“Titanic:MachineLearningfromDisaster”竞赛,要求我们利用乘客数据来预测哪些人更有可能在这场灾难中幸存。这是一个典型的二元分类问题:目标变量Survived只有两个值,0(遇难)或1(生还)。这个项目之所以经典,是因为它涵盖
- 【unity游戏开发——网络】网络协议、TCP vs UDP 本质区别
向宇it
【unity游戏开发——网络】网络网络协议unity游戏引擎c#tcp/ipudp
注意:考虑到热更新的内容比较多,我将热更新的内容分开,并全部整合放在【unity游戏开发——网络】专栏里,感兴趣的小伙伴可以前往逐一查看学习。文章目录一、网络协议概述二、OSI七层模型三、TCP/IP四层模型四、核心传输协议对比1、TCPvsUDP本质区别2、TCP关键机制详解2.1三次握手建立连接2.2四次挥手断开连接五、常见面试题精要六、总结1、TCP:2、UDP:专栏推荐完结一、网络协议概述
- LLM大语言模型学习笔记(1)
Arixs666
大语言模型语言模型笔记人工智能
1.概念大语言模型(LLM,LargeLanguageModel),也称大型语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。2.能力2.1涌现能力区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一是它们的涌现能力。涌现能力是一种令人惊讶的能力,它在小型模型中不明显
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 掌握Linux C++轻量级Web服务器开发:TinyWebServer项目实战
老光私享
本文还有配套的精品资源,点击获取简介:TinyWebServer是一个用C++编写的轻量级Web服务器,专为Linux系统设计。它提供了深入学习Web服务器工作原理和本地开发小型项目的机会。项目涵盖了网络套接字编程、多线程处理、HTTP协议解析等关键系统编程技术,并允许通过源代码分析学习和实践。开发者可以通过扩展TinyWebServer来学习更多关于Web服务器的深入知识和技术。1.Linux下
- 【unity游戏开发——网络】网络游戏通信方案——强联网游戏(Socket长连接)、 弱联网游戏(HTTP短连接)
向宇it
【unity游戏开发——网络】网络unity游戏游戏引擎c#编辑器http
注意:考虑到热更新的内容比较多,我将热更新的内容分开,并全部整合放在【unity游戏开发——网络】专栏里,感兴趣的小伙伴可以前往逐一查看学习。文章目录一、联网游戏类型划分二、核心通信协议对比三、开发选择指南专栏推荐完结一、联网游戏类型划分类型通信特点代表游戏技术本质弱联网游戏按需连接,单次请求后立即断开消消乐、卡牌类(如《刀塔传奇》)短连接通信强联网游戏持续连接,实时双向数据交换《王者荣耀》《和平
- 大语言模型LLM原理篇
大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,
- 我的第一个开源项目:用Python搭建轻量级静态网页服务器—— 零基础也能实现的Web开发初体验
一、为什么选择静态服务器?极简高效:无需数据库或复杂后端逻辑,适合展示简历、作品集等静态内容学习曲线平缓:是理解HTTP协议和Web服务原理的最佳入门方式资源消耗低:单文件Python脚本即可运行,内存占用小于10MB二、完整开发流程(含代码逐行解析)第一步:创建项目结构PWS/#项目根目录├──static/#静态资源文件夹│├──index.html#主页│├──style.css#样式表│└
- Svelte学习笔记六:谈谈双向绑定的使用
月半叫做胖
Svelte前端学习svelte前端框架
表单元素的双向绑定1.input受控绑定使用bind关键字进行绑定,svelte通过bind关键字来完成类似v-model的双向绑定textcheckboxnumberrangeselectletquestions=[{id:1,text:'question1'},{id:2,text:'question2'},{id:3,text:'question3'}];letselected=1;{#ea
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- 常见机器学习算法与应用场景
计算机软件程序设计
知识科普机器学习算法人工智能
当然可以。下面是对常见机器学习算法的全面详细阐述,包括每种算法的基本原理、特点以及典型应用场景。1.监督学习(SupervisedLearning)1.1线性回归(LinearRegression)原理:通过拟合一条直线来表示输入和输出之间的关系,适用于预测连续值输出。特点:简单易懂,计算速度快,但只能捕捉线性关系。应用场景:房价预测股票价格预测销售额预测1.2逻辑回归(LogisticRegre
- 《深入理解Kotlin协程》知识点汇总
岳锋
kotlin
一、协程的分类1.按调用栈分类。Kotlin协程通常被认为是一种无栈协程加粗样式的实现。因为Kotlin的控制流转,依靠对协程体本身编译生成的状态机的状态流转来实现,变量保存也是通过闭包语法来实现的。不过,Kotlin协程可以在挂起函数范围内的任意调用层次挂起。换句话说,我们启动一个Kotlin协程,可以在其中任意嵌套suspend函数,而这又恰恰是有栈协程最重要的特性之一。2.按调度方式分类。对
- Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution论文阅读
青铜锁00
#退化论文阅读深度学习论文阅读图像处理
LearningFullyConvolutionalNetworksforIterativeNon-blindDeconvolution1.研究目标与实际问题1.1研究目标1.2实际意义2.创新方法与模型设计2.1核心框架:迭代式梯度域处理2.1.1模型架构2.2关键技术实现2.2.1梯度域去噪网络2.2.2解卷积模块(核心公式实现)2.2.3损失函数设计2.2.4超参数端到端学习2.3与传统方法
- 【深度学习|学习笔记】如何在深度学习中使用 正则化技术 进行模型压缩、稀疏建模和迁移学习调优?
努力毕业的小土博^_^
机器学习基础算法优质笔记2深度学习学习笔记迁移学习人工智能机器学习
【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?文章目录【深度学习|学习笔记】如何在深度学习中使用正则化技术进行模型压缩、稀疏建模和迁移学习调优?✅一、使用正则化进行模型压缩(ModelCompression)目标:方法:L1正则化促使权重稀疏化代码示例:后续压缩步骤
- Java高并发系统限流算法的应用
赵广陆
arithmeticjava算法开发语言
目录1概述2计数器限流2.1概述2.2实现2.3结果分析2.4优缺点2.5应用3漏桶算法3.1概述3.2实现3.3结果分析3.4优缺点4令牌桶算法4.1概述4.2实现4.3结果分析4.4应用5滑动窗口5.1概述5.2实现5.3结果分析5.4应用想学习架构师构建流程请跳转:Java架构师系统架构设计1概述在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流。限流可以认为服务降级的一种,限流是对
- Python从0到100完整学习指南(必看导航)
是Dream呀
Pythonpython人工智能爬虫web神经网络算法深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和工作就业的先行者!【优惠信息】•新专栏订阅前1000名享9.9元优惠•订阅量破10
- (SERIES1) MacOS Terminal远程SSH连接Aliyun ECS服务器纯命令行模式下部署DM8教程(服务器环境Ubuntu 20.04LTS )
Ender-Shadows
达梦数据库ubuntumacos阿里云
1DM数据库版本介绍1.1版本区别 DM8目前的版本主要包括标准版、企业版、安全版和开发版。前三项的比较如表1-1所示。以适用场景为角度进行分类,标准版适用于小型应用开发,企业版适合生产环境级应用,安全版则在具备所有企业版基础上加入了对四权分立、强制访问控制、审计和实时侵害检测等功能上的补全,在安全性方面实现了更加全面完善的安全策略;至于开发版则专供开发者学习、测试、开发用途,有1年免费试用期,
- Python|读取word文档表格内容
算法与编程之美
算法之美编程语言人工智能python数据挖掘数据可视化
本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。引言在日常生活里,不管是办公、学习还是制作邀请函、请柬、简历等等,我们都会使用一个软件MicrosoftOfficeWord,OfficeWord是微软公司的一个收费文字处理应用程序,是最流行的文字处理程序之一,它虽功能强大,但简学易懂,但同时也有一个缺点,当一个Word文档储存的内容特别庞大的时候,使用者想要提取自己想要
- 记忆力锻炼方法
穗余
记忆力计算机视觉人工智能深度学习
记忆力锻炼的核心在于科学方法、持续训练和健康生活习惯的结合。通过重复训练、关联记忆、充足睡眠等方式,可有效提升大脑信息处理与存储能力。关键在于长期坚持,并结合多种技巧形成适合自己的记忆策略。一、科学记忆方法重复训练与间隔复习大脑通过重复强化神经连接,但机械重复效率低。建议采用间隔重复法,例如学习新知识后,在1天、3天、1周等间隔复习,利用“遗忘曲线”规律巩固记忆。关联记忆法将新信息与已知内容关联,
- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- PHP学习笔记(十二)
访问控制(可见性)对属性或方法的访问控制(PHP7.1后支持常量),是通过在前面添加关键字public(公有)、protected、private来实现。公有的任意可见,受保护的可被自身及其子类和父类访问,私有的只能被其定义所在的类访问属性的访问控制类属性可以定义为public,private或者protected。在没有任何访问控制关键字的情况下,属性声明为public不对称属性可见性从PHP8
- 前沿技术推动机器人的智能化升级
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据机器人ai
前沿技术推动机器人的智能化升级关键词:机器人智能化、人工智能、机器学习、计算机视觉、自主导航、人机交互、边缘计算摘要:本文深入探讨了前沿技术如何推动机器人从传统自动化向智能化升级的演进过程。文章首先分析了机器人技术发展的历史脉络和当前挑战,然后详细阐述了人工智能、机器学习、计算机视觉等关键技术如何赋能机器人智能化。通过算法原理分析、数学模型构建和实际项目案例,展示了智能机器人的核心技术实现路径。最
- SAX解析xml文件
小猪猪08
xml
1.创建SAXParserFactory实例
2.通过SAXParserFactory对象获取SAXParser实例
3.创建一个类SAXParserHander继续DefaultHandler,并且实例化这个类
4.SAXParser实例的parse来获取文件
public static void main(String[] args) {
//
- 为什么mysql里的ibdata1文件不断的增长?
brotherlamp
linuxlinux运维linux资料linux视频linux运维自学
我们在 Percona 支持栏目经常收到关于 MySQL 的 ibdata1 文件的这个问题。
当监控服务器发送一个关于 MySQL 服务器存储的报警时,恐慌就开始了 —— 就是说磁盘快要满了。
一番调查后你意识到大多数地盘空间被 InnoDB 的共享表空间 ibdata1 使用。而你已经启用了 innodbfileper_table,所以问题是:
ibdata1存了什么?
当你启用了 i
- Quartz-quartz.properties配置
eksliang
quartz
其实Quartz JAR文件的org.quartz包下就包含了一个quartz.properties属性配置文件并提供了默认设置。如果需要调整默认配置,可以在类路径下建立一个新的quartz.properties,它将自动被Quartz加载并覆盖默认的设置。
下面是这些默认值的解释
#-----集群的配置
org.quartz.scheduler.instanceName =
- informatica session的使用
18289753290
workflowsessionlogInformatica
如果希望workflow存储最近20次的log,在session里的Config Object设置,log options做配置,save session log :sessions run ;savesessio log for these runs:20
session下面的source 里面有个tracing 
- Scrapy抓取网页时出现CRC check failed 0x471e6e9a != 0x7c07b839L的错误
酷的飞上天空
scrapy
Scrapy版本0.14.4
出现问题现象:
ERROR: Error downloading <GET http://xxxxx CRC check failed
解决方法
1.设置网络请求时的header中的属性'Accept-Encoding': '*;q=0'
明确表示不支持任何形式的压缩格式,避免程序的解压
- java Swing小集锦
永夜-极光
java swing
1.关闭窗体弹出确认对话框
1.1 this.setDefaultCloseOperation (JFrame.DO_NOTHING_ON_CLOSE);
1.2
this.addWindowListener (
new WindowAdapter () {
public void windo
- 强制删除.svn文件夹
随便小屋
java
在windows上,从别处复制的项目中可能带有.svn文件夹,手动删除太麻烦,并且每个文件夹下都有。所以写了个程序进行删除。因为.svn文件夹在windows上是只读的,所以用File中的delete()和deleteOnExist()方法都不能将其删除,所以只能采用windows命令方式进行删除
- GET和POST有什么区别?及为什么网上的多数答案都是错的。
aijuans
get post
如果有人问你,GET和POST,有什么区别?你会如何回答? 我的经历
前几天有人问我这个问题。我说GET是用于获取数据的,POST,一般用于将数据发给服务器之用。
这个答案好像并不是他想要的。于是他继续追问有没有别的区别?我说这就是个名字而已,如果服务器支持,他完全可以把G
- 谈谈新浪微博背后的那些算法
aoyouzi
谈谈新浪微博背后的那些算法
本文对微博中常见的问题的对应算法进行了简单的介绍,在实际应用中的算法比介绍的要复杂的多。当然,本文覆盖的主题并不全,比如好友推荐、热点跟踪等就没有涉及到。但古人云“窥一斑而见全豹”,希望本文的介绍能帮助大家更好的理解微博这样的社交网络应用。
微博是一个很多人都在用的社交应用。天天刷微博的人每天都会进行着这样几个操作:原创、转发、回复、阅读、关注、@等。其中,前四个是针对短博文,最后的关注和@则针
- Connection reset 连接被重置的解决方法
百合不是茶
java字符流连接被重置
流是java的核心部分,,昨天在做android服务器连接服务器的时候出了问题,就将代码放到java中执行,结果还是一样连接被重置
被重置的代码如下;
客户端代码;
package 通信软件服务器;
import java.io.BufferedWriter;
import java.io.OutputStream;
import java.io.O
- web.xml配置详解之filter
bijian1013
javaweb.xmlfilter
一.定义
<filter>
<filter-name>encodingfilter</filter-name>
<filter-class>com.my.app.EncodingFilter</filter-class>
<init-param>
<param-name>encoding<
- Heritrix
Bill_chen
多线程xml算法制造配置管理
作为纯Java语言开发的、功能强大的网络爬虫Heritrix,其功能极其强大,且扩展性良好,深受热爱搜索技术的盆友们的喜爱,但它配置较为复杂,且源码不好理解,最近又使劲看了下,结合自己的学习和理解,跟大家分享Heritrix的点点滴滴。
Heritrix的下载(http://sourceforge.net/projects/archive-crawler/)安装、配置,就不罗嗦了,可以自己找找资
- 【Zookeeper】FAQ
bit1129
zookeeper
1.脱离IDE,运行简单的Java客户端程序
#ZkClient是简单的Zookeeper~$ java -cp "./:zookeeper-3.4.6.jar:./lib/*" ZKClient
1. Zookeeper是的Watcher回调是同步操作,需要添加异步处理的代码
2. 如果Zookeeper集群跨越多个机房,那么Leader/
- The user specified as a definer ('aaa'@'localhost') does not exist
白糖_
localhost
今天遇到一个客户BUG,当前的jdbc连接用户是root,然后部分删除操作都会报下面这个错误:The user specified as a definer ('aaa'@'localhost') does not exist
最后找原因发现删除操作做了触发器,而触发器里面有这样一句
/*!50017 DEFINER = ''aaa@'localhost' */
原来最初
- javascript中showModelDialog刷新父页面
bozch
JavaScript刷新父页面showModalDialog
在页面中使用showModalDialog打开模式子页面窗口的时候,如果想在子页面中操作父页面中的某个节点,可以通过如下的进行:
window.showModalDialog('url',self,‘status...’); // 首先中间参数使用self
在子页面使用w
- 编程之美-买书折扣
bylijinnan
编程之美
import java.util.Arrays;
public class BookDiscount {
/**编程之美 买书折扣
书上的贪心算法的分析很有意思,我看了半天看不懂,结果作者说,贪心算法在这个问题上是不适用的。。
下面用动态规划实现。
哈利波特这本书一共有五卷,每卷都是8欧元,如果读者一次购买不同的两卷可扣除5%的折扣,三卷10%,四卷20%,五卷
- 关于struts2.3.4项目跨站执行脚本以及远程执行漏洞修复概要
chenbowen00
strutsWEB安全
因为近期负责的几个银行系统软件,需要交付客户,因此客户专门请了安全公司对系统进行了安全评测,结果发现了诸如跨站执行脚本,远程执行漏洞以及弱口令等问题。
下面记录下本次解决的过程以便后续
1、首先从最简单的开始处理,服务器的弱口令问题,首先根据安全工具提供的测试描述中发现应用服务器中存在一个匿名用户,默认是不需要密码的,经过分析发现服务器使用了FTP协议,
而使用ftp协议默认会产生一个匿名用
- [电力与暖气]煤炭燃烧与电力加温
comsci
在宇宙中,用贝塔射线观测地球某个部分,看上去,好像一个个马蜂窝,又像珊瑚礁一样,原来是某个国家的采煤区.....
不过,这个采煤区的煤炭看来是要用完了.....那么依赖将起燃烧并取暖的城市,在极度严寒的季节中...该怎么办呢?
&nbs
- oracle O7_DICTIONARY_ACCESSIBILITY参数
daizj
oracle
O7_DICTIONARY_ACCESSIBILITY参数控制对数据字典的访问.设置为true,如果用户被授予了如select any table等any table权限,用户即使不是dba或sysdba用户也可以访问数据字典.在9i及以上版本默认为false,8i及以前版本默认为true.如果设置为true就可能会带来安全上的一些问题.这也就为什么O7_DICTIONARY_ACCESSIBIL
- 比较全面的MySQL优化参考
dengkane
mysql
本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。
1、硬件层相关优化
1.1、CPU相关
在服务器的BIOS设置中,可
- C语言homework2,有一个逆序打印数字的小算法
dcj3sjt126com
c
#h1#
0、完成课堂例子
1、将一个四位数逆序打印
1234 ==> 4321
实现方法一:
# include <stdio.h>
int main(void)
{
int i = 1234;
int one = i%10;
int two = i / 10 % 10;
int three = i / 100 % 10;
- apacheBench对网站进行压力测试
dcj3sjt126com
apachebench
ab 的全称是 ApacheBench , 是 Apache 附带的一个小工具 , 专门用于 HTTP Server 的 benchmark testing , 可以同时模拟多个并发请求。前段时间看到公司的开发人员也在用它作一些测试,看起来也不错,很简单,也很容易使用,所以今天花一点时间看了一下。
通过下面的一个简单的例子和注释,相信大家可以更容易理解这个工具的使用。
- 2种办法让HashMap线程安全
flyfoxs
javajdkjni
多线程之--2种办法让HashMap线程安全
多线程之--synchronized 和reentrantlock的优缺点
多线程之--2种JAVA乐观锁的比较( NonfairSync VS. FairSync)
HashMap不是线程安全的,往往在写程序时需要通过一些方法来回避.其实JDK原生的提供了2种方法让HashMap支持线程安全.
- Spring Security(04)——认证简介
234390216
Spring Security认证过程
认证简介
目录
1.1 认证过程
1.2 Web应用的认证过程
1.2.1 ExceptionTranslationFilter
1.2.2 在request之间共享SecurityContext
1
- Java 位运算
Javahuhui
java位运算
// 左移( << ) 低位补0
// 0000 0000 0000 0000 0000 0000 0000 0110 然后左移2位后,低位补0:
// 0000 0000 0000 0000 0000 0000 0001 1000
System.out.println(6 << 2);// 运行结果是24
// 右移( >> ) 高位补"
- mysql免安装版配置
ldzyz007
mysql
1、my-small.ini是为了小型数据库而设计的。不应该把这个模型用于含有一些常用项目的数据库。
2、my-medium.ini是为中等规模的数据库而设计的。如果你正在企业中使用RHEL,可能会比这个操作系统的最小RAM需求(256MB)明显多得多的物理内存。由此可见,如果有那么多RAM内存可以使用,自然可以在同一台机器上运行其它服务。
3、my-large.ini是为专用于一个SQL数据
- MFC和ado数据库使用时遇到的问题
你不认识的休道人
sqlC++mfc
===================================================================
第一个
===================================================================
try{
CString sql;
sql.Format("select * from p
- 表单重复提交Double Submits
rensanning
double
可能发生的场景:
*多次点击提交按钮
*刷新页面
*点击浏览器回退按钮
*直接访问收藏夹中的地址
*重复发送HTTP请求(Ajax)
(1)点击按钮后disable该按钮一会儿,这样能避免急躁的用户频繁点击按钮。
这种方法确实有些粗暴,友好一点的可以把按钮的文字变一下做个提示,比如Bootstrap的做法:
http://getbootstrap.co
- Java String 十大常见问题
tomcat_oracle
java正则表达式
1.字符串比较,使用“==”还是equals()? "=="判断两个引用的是不是同一个内存地址(同一个物理对象)。 equals()判断两个字符串的值是否相等。 除非你想判断两个string引用是否同一个对象,否则应该总是使用equals()方法。 如果你了解字符串的驻留(String Interning)则会更好地理解这个问题。
- SpringMVC 登陆拦截器实现登陆控制
xp9802
springMVC
思路,先登陆后,将登陆信息存储在session中,然后通过拦截器,对系统中的页面和资源进行访问拦截,同时对于登陆本身相关的页面和资源不拦截。
实现方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23