Word2Vec 的pytorch 实现(简单)

import gc
import torch 
import numpy as np 
from torch import nn,optim
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader,TensorDataset

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

定义数据

sentences = ["jack like dog", "jack like cat", "jack like animal",
  "dog cat animal", "banana apple cat dog like", "dog fish milk like",
  "dog cat animal like", "jack like apple", "apple like", "jack like banana",
  "apple banana jack movie book music like"]


word_sequence = " ".join(sentences).split()

vocab = list(set(word_sequence))
word2idx = {w:i for i,w in enumerate(vocab)}
print("*"*85)
print("word_sequence:",word_sequence)
print("*"*85)
print("vocab:",vocab)
print("*"*85)
print("word2idx:",word2idx)
*************************************************************************************
word_sequence: ['jack', 'like', 'dog', 'jack', 'like', 'cat', 'jack', 'like', 'animal', 'dog', 'cat', 'animal', 'banana', 'apple', 'cat', 'dog', 'like', 'dog', 'fish', 'milk', 'like', 'dog', 'cat', 'animal', 'like', 'jack', 'like', 'apple', 'apple', 'like', 'jack', 'like', 'banana', 'apple', 'banana', 'jack', 'movie', 'book', 'music', 'like']
*************************************************************************************
vocab: ['dog', 'cat', 'movie', 'jack', 'fish', 'milk', 'music', 'book', 'apple', 'banana', 'like', 'animal']
*************************************************************************************
word2idx: {'dog': 0, 'cat': 1, 'movie': 2, 'jack': 3, 'fish': 4, 'milk': 5, 'music': 6, 'book': 7, 'apple': 8, 'banana': 9, 'like': 10, 'animal': 11}

数据预处理

# [1,2,3,4,5,6]

batch_size = 4
embedding_size=2
window = 2
vocab_size = len(vocab)


skip_grams = []
for idx in range(window,len(word_sequence)-window):
    #找到中心词
    center = word2idx[word_sequence[idx]]
    #临近词的索引
    context_idx = list(range(idx-window,idx))+list(range(idx+1,idx+window+1))
    # 找到这些词在word2idx中对应的索引
    context = [word2idx[word_sequence[i]] for i in context_idx]
    for w in context:
        skip_grams.append([center,w])
        
def make_data(skip_grams):
    input_data = []
    output_data = []
    for i in range(len(skip_grams)):
        input_data.append(np.eye(vocab_size)[skip_grams[i][0]])
        output_data.append(skip_grams[i][1])
    return input_data,output_data

input_data,output_data = make_data(skip_grams)
input_data= torch.tensor(input_data,dtype=torch.float32)
output_data = torch.tensor(output_data,dtype=torch.long)
dataset = TensorDataset(input_data, output_data)
train_loader = DataLoader(dataset,batch_size,shuffle =True)

构建模型

class word2vec_(nn.Module):
    def __init__(self):
        super(word2vec_,self).__init__()
        self.w = nn.Parameter(torch.randn(vocab_size,embedding_size).type(torch.float32))
        self.v = nn.Parameter(torch.randn(embedding_size,vocab_size).type(torch.float32))
    def forward(self,x):
#         x:[batch_size,voc_Size]
        
        hidden = torch.matmul(x,self.w)
        #[batch_size,embedding_size]
        
        output = torch.matmul(hidden,self.v )
        return output

model =word2vec_().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)

num_epochs = 100
loss_all = []
for epoch in range(num_epochs):
    train_loss = 0
    train_num = 0
    for step,(x,y) in enumerate(train_loader):
        x = x.to(device)
        y = y.to(device)
        z_hat = model.forward(x)
        loss= criterion(z_hat,y)
        loss.backward()
        optimizer.zero_grad()
        optimizer.step()
        train_loss += loss.item() *len(y)
        train_num+=len(y)
    loss_all.append(train_loss/train_num)
    print(f"Epoch:{epoch+1} Loss:{loss_all[-1]:0.8f}")
    del x,y,loss,train_loss,train_num
    gc.collect()
    torch.cuda.empty_cache()
Epoch:1 Loss:3.78907597
Epoch:2 Loss:3.78907595
Epoch:3 Loss:3.78907597
Epoch:4 Loss:3.78907596
Epoch:5 Loss:3.78907599
Epoch:6 Loss:3.78907598
Epoch:7 Loss:3.78907598
Epoch:8 Loss:3.78907598
Epoch:9 Loss:3.78907598
Epoch:10 Loss:3.78907600
Epoch:11 Loss:3.78907598
Epoch:12 Loss:3.78907597
Epoch:13 Loss:3.78907598
Epoch:14 Loss:3.78907599
Epoch:15 Loss:3.78907598
Epoch:16 Loss:3.78907599
Epoch:17 Loss:3.78907599
Epoch:18 Loss:3.78907596
Epoch:19 Loss:3.78907598
Epoch:20 Loss:3.78907598
Epoch:21 Loss:3.78907597
Epoch:22 Loss:3.78907598
Epoch:23 Loss:3.78907599
Epoch:24 Loss:3.78907597
Epoch:25 Loss:3.78907599
Epoch:26 Loss:3.78907596
Epoch:27 Loss:3.78907596
Epoch:28 Loss:3.78907598
Epoch:29 Loss:3.78907597
Epoch:30 Loss:3.78907598
Epoch:31 Loss:3.78907598
Epoch:32 Loss:3.78907599
Epoch:33 Loss:3.78907597
Epoch:34 Loss:3.78907596
Epoch:35 Loss:3.78907598
Epoch:36 Loss:3.78907597
Epoch:37 Loss:3.78907598
Epoch:38 Loss:3.78907599
Epoch:39 Loss:3.78907599
Epoch:40 Loss:3.78907598
Epoch:41 Loss:3.78907598
Epoch:42 Loss:3.78907602
Epoch:43 Loss:3.78907597
Epoch:44 Loss:3.78907597
Epoch:45 Loss:3.78907599
Epoch:46 Loss:3.78907598
Epoch:47 Loss:3.78907596
Epoch:48 Loss:3.78907597
Epoch:49 Loss:3.78907597
Epoch:50 Loss:3.78907598
Epoch:51 Loss:3.78907597
Epoch:52 Loss:3.78907596
Epoch:53 Loss:3.78907595
Epoch:54 Loss:3.78907596
Epoch:55 Loss:3.78907596
Epoch:56 Loss:3.78907598
Epoch:57 Loss:3.78907598
Epoch:58 Loss:3.78907600
Epoch:59 Loss:3.78907599
Epoch:60 Loss:3.78907598
Epoch:61 Loss:3.78907596
Epoch:62 Loss:3.78907597
Epoch:63 Loss:3.78907597
Epoch:64 Loss:3.78907598
Epoch:65 Loss:3.78907597
Epoch:66 Loss:3.78907599
Epoch:67 Loss:3.78907598
Epoch:68 Loss:3.78907596
Epoch:69 Loss:3.78907599
Epoch:70 Loss:3.78907598
Epoch:71 Loss:3.78907597
Epoch:72 Loss:3.78907597
Epoch:73 Loss:3.78907596
Epoch:74 Loss:3.78907599
Epoch:75 Loss:3.78907596
Epoch:76 Loss:3.78907596
Epoch:77 Loss:3.78907598
Epoch:78 Loss:3.78907598
Epoch:79 Loss:3.78907596
Epoch:80 Loss:3.78907595
Epoch:81 Loss:3.78907598
Epoch:82 Loss:3.78907597
Epoch:83 Loss:3.78907599
Epoch:84 Loss:3.78907596
Epoch:85 Loss:3.78907598
Epoch:86 Loss:3.78907598
Epoch:87 Loss:3.78907598
Epoch:88 Loss:3.78907598
Epoch:89 Loss:3.78907597
Epoch:90 Loss:3.78907598
Epoch:91 Loss:3.78907597
Epoch:92 Loss:3.78907597
Epoch:93 Loss:3.78907597
Epoch:94 Loss:3.78907597
Epoch:95 Loss:3.78907597
Epoch:96 Loss:3.78907596
Epoch:97 Loss:3.78907597
Epoch:98 Loss:3.78907597
Epoch:99 Loss:3.78907597
Epoch:100 Loss:3.78907597

可视化

for i, label in enumerate(vocab):
    W, WT = model.parameters()
    x,y = float(W[i][0]), float(W[i][1])
    plt.scatter(x, y)
    plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

Word2Vec 的pytorch 实现(简单)_第1张图片


你可能感兴趣的:(深度学习,pytorch,python,深度学习)