- 2023年第10期(NeuroImage):DomainATM:多中心医学图像数据标准化工具箱
影浮科技ImageFlow
基本信息1.标题:DomainATM:Domainadaptationtoolboxformedicaldataanalysis.2.期刊:NeuroImage3.IF/JCR/分区:7.4/Q1/中科院一区4.DOI:10.1016/j.neuroimage.2023.119863目录1、导读2、背景动机3、研究目的4、工具箱介绍5、测试试验6、局限不足1导读域适应(DA)是基于机器学习的现代医
- 在NLP深层语义分析中,深度学习和机器学习的区别与联系
在自然语言处理(NLP)的深层语义分析任务中,深度学习与机器学习的区别和联系主要体现在以下方面:一、核心区别特征提取方式机器学习:依赖人工设计特征(如词频、句法规则、TF-IDF等),需要领域专家对文本进行结构化处理。例如,传统情感分析需人工定义“情感词库”或通过词性标注提取关键成分。深度学习:通过神经网络自动学习多层次特征。例如,BERT等模型可从原始文本中捕获词向量、句法关系甚至篇章级语义,无
- 深度学习--利用梯度下降法进行多变量的二分类(感知机)
白话学生nit
深度学习分类人工智能
其实这一节涉及到了感知机的相关知识,就把这一节当作是学习感知机的引子吧。什么是二分类我们先来说一下什么是二分类,二分类指的是将结果分为两个互斥的类别,通常用来表示问题的两种可能。为什么用感知机学习二分类常见的解决问题的模型有很多,这里我们使用感知机模型。至于为什么,因为感知机模型很多地方用起来比较简便,就拿我们这一节的问题举一下例子,我们需要依照房子的价格对房子进行分类。在感知机模型中,我们可以使
- 迁移学习:知识复用的智能迁移引擎 | 从理论到实践的跨域赋能范式
大千AI助手
人工智能Python#OTHER迁移学习人工智能机器学习算法神经网络大模型迁移
让AI像人类一样“举一反三”的通用学习框架本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!一、核心定义与基本概念迁移学习(TransferLearning)是一种机器学习范式,其核心思想是:将源领域(SourceDomain)学到的知识迁移到目标领域(TargetDomain),以提升目标任务的性能
- 敏捷开发中的自然语言处理集成
项目管理实战手册
项目管理最佳实践敏捷流程自然语言处理easyuiai
敏捷开发中的自然语言处理集成:让代码与需求“说人话”关键词:敏捷开发、自然语言处理(NLP)、用户故事分析、需求自动化、持续集成优化摘要:在敏捷开发中,“快速响应变化”的核心目标常被繁琐的文本处理拖慢——需求文档像“天书”、用户故事靠“脑补”、缺陷报告整理耗时……自然语言处理(NLP)就像一位“智能翻译官”,能让开发团队与需求文档“流畅对话”。本文将用“搭积木”“翻译机”等生活化比喻,带您理解如何
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- 智能喷洒机器人目标识别系统:基于NanoDet的目标检测与UI界面实现
YOLO实战营
机器人目标检测uiNanoDet计算机视觉目标跟踪深度学习
在现代农业生产中,自动化喷洒系统是实现精准农业的重要组成部分。智能喷洒机器人通过图像识别和自动控制技术,能够高效识别并精确喷洒农药、肥料等,提高农业生产效率,降低化学品使用量,减少环境污染。目标识别是智能喷洒机器人中至关重要的部分,它涉及到精准的作物和病虫害识别,确保喷洒操作的准确性。在本篇博客中,我们将构建一个基于NanoDet深度学习目标检测模型的智能喷洒机器人目标识别系统。我们将介绍如何使用
- 对标ChatGPT,「文心一言」今日亮相!AI人机时代来临,未来在何方?
AI医学
本文由「AI医学er」提供医海无涯,AI同舟。关注我们,助力高效科研。3月15日,OpenAI公布了其大型语言模型的最新版本——GPT-4。3月16日,百度文心一言人工智能聊天机器人正式上线。一个时代开始了。OpenAI在官网表示,GPT-4是一个能接受图像和文本输入,并输出文本的多模态模型,是OpenAI在扩展深度学习方面的最新成果。此前的ChatGPT,只能通过向其输入文字提问才能生成文字回答
- 【深度学习新浪潮】什么是system 1和system 2?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能大模型推理模型COT模型蒸馏动态推理
在大模型研究中,System1和System2的概念源于心理学家DanielKahneman的双系统理论,用于描述人类思维的两种模式。System1代表快速、直觉、自动化的思维(如模式识别),而System2代表慢速、有意识、需要努力的逻辑推理(如复杂数学计算)。这一理论被引入AI领域后,成为理解大模型能力边界和优化方向的重要框架。一、大模型中的System1与System2的定义System1(
- 学习人工智能开发的详细指南
Ws_
学习人工智能python
一、引言人工智能(AI)开发是一个充满挑战与机遇的领域,它融合了数学、计算机科学、统计学、认知科学等多个学科的知识。随着大数据、云计算和深度学习技术的快速发展,AI已经成为推动社会进步和产业升级的关键力量。本文将为初学者提供一份详细的学习指南,帮助大家逐步掌握AI开发的核心技能。二、基础知识准备数学基础:线性代数:理解向量、矩阵、线性变换等基本概念,掌握矩阵运算和特征值分解等技巧。概率论与统计学:
- 使用Python调用Hugging Face Question Answering (问答)模型
墨如夜色
pythoneasyui开发语言Python
使用Python调用HuggingFaceQuestionAnswering(问答)模型在自然语言处理领域,问答系统是一种能够回答用户提出的问题的智能系统。HuggingFace是一个知名的开源软件库,提供了许多强大的自然语言处理工具和模型。其中,HuggingFace的QuestionAnswering模型可以帮助我们构建问答系统,使得我们能够从给定的文本中提取答案。本文将介绍如何使用Pytho
- Python爬虫【四十五章】爬虫攻防战:异步并发+AI反爬识别的技术解密
程序员_CLUB
Python入门到进阶python爬虫人工智能
目录引言:当爬虫工程师遇上AI反爬官一、异步并发基础设施层1.1混合调度框架设计1.2智能连接池管理二、机器学习反爬识别层2.1特征工程体系2.2轻量级在线推理三、智能决策系统3.1动态策略引擎3.2实时对抗案例四、性能优化实战4.1全链路压测数据4.2典型故障处理案例五、总结:构建智能化的爬虫生态系统Python爬虫相关文章(推荐)引言:当爬虫工程师遇上AI反爬官在大数据采集领域,我们正经历着技
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 万字长文,解读大模型技术原理(非常详细)零基础入门到精通,收藏这一篇就够了
大模型是指具有大规模参数和复杂计算结构的机器学习模型。本文从大模型的发展历程出发,对大模型领域的各个技术细节进行详细解读,供大家在了解大模型基本知识的过程中起到一定参考作用。一、大模型的定义大语言模型作为一个被验证可行的方向,其“大”体现在训练数据集广,模型参数和层数大,计算量大,其价值体现在通用性上,并且有更好的泛化能力。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设
- TensorFlow为AI人工智能航空航天领域带来变革
AI原生应用开发
人工智能tensorflowpythonai
TensorFlow为AI人工智能航空航天领域带来变革关键词:TensorFlow、人工智能、航空航天、机器学习、深度学习、神经网络、自主系统摘要:本文探讨了TensorFlow这一强大的机器学习框架如何推动航空航天领域的创新。我们将从基础概念入手,逐步深入分析TensorFlow在航天器导航、卫星图像处理、飞行器自主决策等关键应用场景中的实现原理。通过实际代码示例和架构图解,展示TensorFl
- 多语言文本分类在AI应用中的实践
AI原生应用开发
人工智能分类数据挖掘ai
多语言文本分类在AI应用中的实践关键词:多语言文本分类、自然语言处理、机器学习、深度学习、BERT、迁移学习、跨语言模型摘要:本文深入探讨多语言文本分类在AI领域的应用实践。我们将从基础概念出发,逐步讲解其核心原理、技术架构和实现方法,并通过实际案例展示如何构建一个高效的多语言文本分类系统。文章将涵盖从传统机器学习方法到最先进的深度学习技术,特别关注跨语言迁移学习在实际业务场景中的应用。背景介绍目
- 从零开始构建AI原生应用的认知架构
AI原生应用开发
AI-native架构ai
从零开始构建AI原生应用的认知架构关键词:AI原生应用、认知架构、机器学习、知识图谱、神经网络、智能决策、系统设计摘要:本文深入探讨如何从零开始构建AI原生应用的认知架构。我们将从基本概念出发,逐步解析认知架构的核心组件,包括知识表示、推理机制和学习能力等。通过生动的比喻和实际代码示例,帮助读者理解如何设计一个能够模拟人类认知过程的AI系统。文章还将介绍当前最先进的认知架构模型,并展望未来发展趋势
- Orange3实战教程:图像分析---图像嵌入
err2008
Orange3实战教程数据挖掘神经网络自然语言处理机器学习计算机视觉深度学习orange3中文版
图像嵌入通过深度神经网络实现图像嵌入。输入图像:图像列表。输出嵌入向量:用数字向量表示的图像。跳过的图像:未计算嵌入向量的图像列表。图像嵌入功能读取图像并将其上传至远程服务器或本地计算。深度学习模型用于为每张图像计算特征向量。该功能返回一个增强的数据表,包含额外的列(图像描述符)。图像可以通过导入图像小部件导入,也可以通过电子表格中的图像路径导入。在这种情况下,包含图像路径的列需要一个三行表头,第
- PyTorch生成式人工智能(18)——循环神经网络详解与实现
盼小辉丶
pytorchrnn自然语言处理
PyTorch生成式人工智能(18)——循环神经网络详解与实现0.前言1.文本生成的挑战2.循环神经网络2.1文本数据2.2循环神经网络原理3.长短期记忆网络3.自然语言处理基础3.1分词3.2词嵌入3.3词嵌入在自然语言处理中的应用小结系列链接0.前言我们已经学习了如何生成数字和图像等内容。从本节开始,我们将主要聚焦于文本生成。人类语言极其复杂且充满细微差别,不仅仅涉及语法和词汇的理解,还包括上
- Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring 论文阅读
钟屿
论文阅读计算机视觉人工智能
用于动态场景去模糊的深度多尺度卷积神经网络摘要针对一般动态场景的非均匀盲去模糊是一个具有挑战性的计算机视觉问题,因为模糊不仅来源于多个物体运动,还来源于相机抖动和场景深度变化。为了去除这些复杂的运动模糊,传统的基于能量优化的方法依赖于简单的假设,例如模糊核是部分均匀或局部线性的。此外,最近的基于机器学习的方法也依赖于在这些假设下生成的合成模糊数据集。这使得传统的去模糊方法在模糊核难以近似或参数化的
- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- 「日拱一码」033 机器学习——严格划分
胖达不服输
「日拱一码」机器学习人工智能严格划分组划分
目录简单随机划分(train_test_split)分组划分(GroupSplitting)简单分组划分(GroupSplitting)分层分组划分(StratifiedGroupSplitting)交叉验证法(Cross-Validation)分组K折交叉验证(GroupKFold)留一组法(LeaveOneGroupOut)简单随机划分(train_test_split)简单随机分组通过随机分
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 从零开始:搭建你的人工智能开发环境
人工智能教程
人工智能YOLO机器学习transformer线性回归动态规划排序算法
前言在人工智能和机器学习的旅程中,一个稳定且高效的开发环境是成功的关键第一步。无论是初学者还是经验丰富的开发者,一个配置良好的开发环境都能大大提高工作效率,减少遇到的问题。本文将从零开始,逐步指导你如何搭建一个完整的人工智能开发环境,包括操作系统选择、Python安装、常用库的配置以及开发工具的选择。一、选择合适的操作系统(一)主流操作系统介绍在搭建人工智能开发环境时,首先需要选择一个合适的操作系
- AI作画:AI人工智能激发艺术创作灵感
AGI大模型与大数据研究院
AI作画人工智能ai
AI作画:AI人工智能激发艺术创作灵感关键词:AI作画、生成艺术、深度学习、神经网络、艺术创作、人工智能、创意工具摘要:本文深入探讨AI作画技术如何激发艺术创作灵感。我们将从基础概念出发,解释AI如何"学习"艺术风格并生成新作品,分析核心技术原理,提供实际应用案例,并展望这一领域的未来发展趋势。通过通俗易懂的讲解和实际代码示例,帮助读者理解这项融合科技与艺术的创新技术。背景介绍目的和范围本文旨在向
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后