在前面两节中,如果不裁剪梯度,模型将无法正常训练。为了深刻理解这一现象,本节将介绍循环神经网络中梯度的计算和存储方法,即通过时间反向传播(back-propagation through time)。
我们在3.14节(正向传播、反向传播和计算图)中介绍了神经网络中梯度计算与存储的一般思路,并强调正向传播和反向传播相互依赖。正向传播在循环神经网络中比较直观,而通过时间反向传播其实是反向传播在循环神经网络中的具体应用。我们需要将循环神经网络按时间步展开,从而得到模型变量和参数之间的依赖关系,并依据链式法则应用反向传播计算并存储梯度。
简单起见,我们考虑一个无偏差项的循环神经网络,且激活函数为恒等映射( ϕ ( x ) = x \phi(x)=x ϕ(x)=x)。设时间步 t t t 的输入为单样本 x t ∈ R d \boldsymbol{x}_t \in \mathbb{R}^d xt∈Rd,标签为 y t y_t yt,那么隐藏状态 h t ∈ R h \boldsymbol{h}_t \in \mathbb{R}^h ht∈Rh的计算表达式为
h t = W h x x t + W h h h t − 1 , \boldsymbol{h}_t = \boldsymbol{W}_{hx} \boldsymbol{x}_t + \boldsymbol{W}_{hh} \boldsymbol{h}_{t-1}, ht=Whxxt+Whhht−1,
其中 W h x ∈ R h × d \boldsymbol{W}_{hx} \in \mathbb{R}^{h \times d} Whx∈Rh×d和 W h h ∈ R h × h \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} Whh∈Rh×h是隐藏层权重参数。设输出层权重参数 W q h ∈ R q × h \boldsymbol{W}_{qh} \in \mathbb{R}^{q \times h} Wqh∈Rq×h,时间步 t t t的输出层变量 o t ∈ R q \boldsymbol{o}_t \in \mathbb{R}^q ot∈Rq计算为
o t = W q h h t . \boldsymbol{o}_t = \boldsymbol{W}_{qh} \boldsymbol{h}_{t}. ot=Wqhht.
设时间步 t t t的损失为 ℓ ( o t , y t ) \ell(\boldsymbol{o}_t, y_t) ℓ(ot,yt)。时间步数为 T T T的损失函数 L L L定义为
L = 1 T ∑ t = 1 T ℓ ( o t , y t ) . L = \frac{1}{T} \sum_{t=1}^T \ell (\boldsymbol{o}_t, y_t). L=T1t=1∑Tℓ(ot,yt).
我们将 L L L称为有关给定时间步的数据样本的目标函数,并在本节后续讨论中简称为目标函数。
为了可视化循环神经网络中模型变量和参数在计算中的依赖关系,我们可以绘制模型计算图,如图6.3所示。例如,时间步3的隐藏状态 h 3 \boldsymbol{h}_3 h3的计算依赖模型参数 W h x \boldsymbol{W}_{hx} Whx、 W h h \boldsymbol{W}_{hh} Whh、上一时间步隐藏状态 h 2 \boldsymbol{h}_2 h2以及当前时间步输入 x 3 \boldsymbol{x}_3 x3。
刚刚提到,图6.3中的模型的参数是 W h x \boldsymbol{W}_{hx} Whx, W h h \boldsymbol{W}_{hh} Whh 和 W q h \boldsymbol{W}_{qh} Wqh。与3.14节(正向传播、反向传播和计算图)中的类似,训练模型通常需要模型参数的梯度 ∂ L / ∂ W h x \partial L/\partial \boldsymbol{W}_{hx} ∂L/∂Whx、 ∂ L / ∂ W h h \partial L/\partial \boldsymbol{W}_{hh} ∂L/∂Whh和 ∂ L / ∂ W q h \partial L/\partial \boldsymbol{W}_{qh} ∂L/∂Wqh。
根据图6.3中的依赖关系,我们可以按照其中箭头所指的反方向依次计算并存储梯度。为了表述方便,我们依然采用3.14节中表达链式法则的运算符prod。
首先,目标函数有关各时间步输出层变量的梯度 ∂ L / ∂ o t ∈ R q \partial L/\partial \boldsymbol{o}_t \in \mathbb{R}^q ∂L/∂ot∈Rq很容易计算:
∂ L ∂ o t = ∂ ℓ ( o t , y t ) T ⋅ ∂ o t . \frac{\partial L}{\partial \boldsymbol{o}_t} = \frac{\partial \ell (\boldsymbol{o}_t, y_t)}{T \cdot \partial \boldsymbol{o}_t}. ∂ot∂L=T⋅∂ot∂ℓ(ot,yt).
下面,我们可以计算目标函数有关模型参数 W q h \boldsymbol{W}_{qh} Wqh的梯度 ∂ L / ∂ W q h ∈ R q × h \partial L/\partial \boldsymbol{W}_{qh} \in \mathbb{R}^{q \times h} ∂L/∂Wqh∈Rq×h。根据图6.3, L L L通过 o 1 , … , o T \boldsymbol{o}_1, \ldots, \boldsymbol{o}_T o1,…,oT依赖 W q h \boldsymbol{W}_{qh} Wqh。依据链式法则,
∂ L ∂ W q h = ∑ t = 1 T prod ( ∂ L ∂ o t , ∂ o t ∂ W q h ) = ∑ t = 1 T ∂ L ∂ o t h t ⊤ . \frac{\partial L}{\partial \boldsymbol{W}_{qh}} = \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{W}_{qh}}\right) = \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{o}_t} \boldsymbol{h}_t^\top. ∂Wqh∂L=t=1∑Tprod(∂ot∂L,∂Wqh∂ot)=t=1∑T∂ot∂Lht⊤.
其次,我们注意到隐藏状态之间也存在依赖关系。
在图6.3中, L L L只通过 o T \boldsymbol{o}_T oT依赖最终时间步 T T T的隐藏状态 h T \boldsymbol{h}_T hT。因此,我们先计算目标函数有关最终时间步隐藏状态的梯度 ∂ L / ∂ h T ∈ R h \partial L/\partial \boldsymbol{h}_T \in \mathbb{R}^h ∂L/∂hT∈Rh。依据链式法则,我们得到
∂ L ∂ h T = prod ( ∂ L ∂ o T , ∂ o T ∂ h T ) = W q h ⊤ ∂ L ∂ o T . \frac{\partial L}{\partial \boldsymbol{h}_T} = \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{o}_T}, \frac{\partial \boldsymbol{o}_T}{\partial \boldsymbol{h}_T} \right) = \boldsymbol{W}_{qh}^\top \frac{\partial L}{\partial \boldsymbol{o}_T}. ∂hT∂L=prod(∂oT∂L,∂hT∂oT)=Wqh⊤∂oT∂L.
接下来对于时间步 t < T t < T t<T, 在图6.3中, L L L通过 h t + 1 \boldsymbol{h}_{t+1} ht+1和 o t \boldsymbol{o}_t ot依赖 h t \boldsymbol{h}_t ht。依据链式法则,
目标函数有关时间步 t < T t < T t<T的隐藏状态的梯度 ∂ L / ∂ h t ∈ R h \partial L/\partial \boldsymbol{h}_t \in \mathbb{R}^h ∂L/∂ht∈Rh需要按照时间步从大到小依次计算:
∂ L ∂ h t = prod ( ∂ L ∂ h t + 1 , ∂ h t + 1 ∂ h t ) + prod ( ∂ L ∂ o t , ∂ o t ∂ h t ) = W h h ⊤ ∂ L ∂ h t + 1 + W q h ⊤ ∂ L ∂ o t \frac{\partial L}{\partial \boldsymbol{h}_t} = \text{prod} (\frac{\partial L}{\partial \boldsymbol{h}_{t+1}}, \frac{\partial \boldsymbol{h}_{t+1}}{\partial \boldsymbol{h}_t}) + \text{prod} (\frac{\partial L}{\partial \boldsymbol{o}_t}, \frac{\partial \boldsymbol{o}_t}{\partial \boldsymbol{h}_t} ) = \boldsymbol{W}_{hh}^\top \frac{\partial L}{\partial \boldsymbol{h}_{t+1}} + \boldsymbol{W}_{qh}^\top \frac{\partial L}{\partial \boldsymbol{o}_t} ∂ht∂L=prod(∂ht+1∂L,∂ht∂ht+1)+prod(∂ot∂L,∂ht∂ot)=Whh⊤∂ht+1∂L+Wqh⊤∂ot∂L
将上面的递归公式展开,对任意时间步 1 ≤ t ≤ T 1 \leq t \leq T 1≤t≤T,我们可以得到目标函数有关隐藏状态梯度的通项公式
∂ L ∂ h t = ∑ i = t T ( W h h ⊤ ) T − i W q h ⊤ ∂ L ∂ o T + t − i . \frac{\partial L}{\partial \boldsymbol{h}_t} = \sum_{i=t}^T {\left(\boldsymbol{W}_{hh}^\top\right)}^{T-i} \boldsymbol{W}_{qh}^\top \frac{\partial L}{\partial \boldsymbol{o}_{T+t-i}}. ∂ht∂L=i=t∑T(Whh⊤)T−iWqh⊤∂oT+t−i∂L.
由上式中的指数项可见,当时间步数 T T T 较大或者时间步 t t t 较小时,目标函数有关隐藏状态的梯度较容易出现衰减和爆炸。这也会影响其他包含 ∂ L / ∂ h t \partial L / \partial \boldsymbol{h}_t ∂L/∂ht项的梯度,例如隐藏层中模型参数的梯度 ∂ L / ∂ W h x ∈ R h × d \partial L / \partial \boldsymbol{W}_{hx} \in \mathbb{R}^{h \times d} ∂L/∂Whx∈Rh×d和 ∂ L / ∂ W h h ∈ R h × h \partial L / \partial \boldsymbol{W}_{hh} \in \mathbb{R}^{h \times h} ∂L/∂Whh∈Rh×h。
在图6.3中, L L L通过 h 1 , … , h T \boldsymbol{h}_1, \ldots, \boldsymbol{h}_T h1,…,hT依赖这些模型参数。
依据链式法则,我们有
∂ L ∂ W h x = ∑ t = 1 T prod ( ∂ L ∂ h t , ∂ h t ∂ W h x ) = ∑ t = 1 T ∂ L ∂ h t x t ⊤ , ∂ L ∂ W h h = ∑ t = 1 T prod ( ∂ L ∂ h t , ∂ h t ∂ W h h ) = ∑ t = 1 T ∂ L ∂ h t h t − 1 ⊤ . \begin{aligned} \frac{\partial L}{\partial \boldsymbol{W}_{hx}} &= \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{h}_t}, \frac{\partial \boldsymbol{h}_t}{\partial \boldsymbol{W}_{hx}}\right) = \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{h}_t} \boldsymbol{x}_t^\top,\\ \frac{\partial L}{\partial \boldsymbol{W}_{hh}} &= \sum_{t=1}^T \text{prod}\left(\frac{\partial L}{\partial \boldsymbol{h}_t}, \frac{\partial \boldsymbol{h}_t}{\partial \boldsymbol{W}_{hh}}\right) = \sum_{t=1}^T \frac{\partial L}{\partial \boldsymbol{h}_t} \boldsymbol{h}_{t-1}^\top. \end{aligned} ∂Whx∂L∂Whh∂L=t=1∑Tprod(∂ht∂L,∂Whx∂ht)=t=1∑T∂ht∂Lxt⊤,=t=1∑Tprod(∂ht∂L,∂Whh∂ht)=t=1∑T∂ht∂Lht−1⊤.
我们已在3.14节里解释过,每次迭代中,我们在依次计算完以上各个梯度后,会将它们存储起来,从而避免重复计算。例如,由于隐藏状态梯度 ∂ L / ∂ h t \partial L/\partial \boldsymbol{h}_t ∂L/∂ht被计算和存储,之后的模型参数梯度 ∂ L / ∂ W h x \partial L/\partial \boldsymbol{W}_{hx} ∂L/∂Whx和 ∂ L / ∂ W h h \partial L/\partial \boldsymbol{W}_{hh} ∂L/∂Whh的计算可以直接读取 ∂ L / ∂ h t \partial L/\partial \boldsymbol{h}_t ∂L/∂ht的值,而无须重复计算它们。此外,反向传播中的梯度计算可能会依赖变量的当前值。它们正是通过正向传播计算出来的。
举例来说,参数梯度 ∂ L / ∂ W h h \partial L/\partial \boldsymbol{W}_{hh} ∂L/∂Whh的计算需要依赖隐藏状态在时间步 t = 0 , … , T − 1 t = 0, \ldots, T-1 t=0,…,T−1的当前值 h t \boldsymbol{h}_t ht( h 0 \boldsymbol{h}_0 h0是初始化得到的)。这些值是通过从输入层到输出层的正向传播计算并存储得到的。
注:本节与原书基本相同,原书传送门