人工神经网络的应用实例,神经网络技术及其应用

matlab神经网络目前有什么具体的实际应用

MATLAB中文论坛2010年出过一本书,北航出版社的,叫《MATLAB神经网络30个案例分析(豆瓣)》。我觉得把它作为入门书挺好的,每一章配有视频和代码,可以依样画葫芦。

刚刚顺手还看到了另一本书《MATLAB智能算法30个案例分析》,看目录貌似内容也比较接近的。

《神经网络》包含的30个例子:P神经网络的数据分类——语音特征信号分类BP神经网络的非线性系统建模——非线性函数拟合遗传算法优化BP神经网络——非线性函数拟合神经网络遗传算法函数极值寻优——非线性函数极值寻优基于BP_Adaboost的强分类器设计——公司财务预警建模PID神经元网络解耦控制算法——多变量系统控制RBF网络的回归——非线性函数回归的实现GRNN的数据预测——基于广义回归神经网络的货运量预测离散Hopfield神经网络的联想记忆——数字识别离散Hopfield神经网络的分类——高校科研能力评价连续Hopfield神经网络的优化——旅行商问题优化计算SVM的数据分类预测——意大利葡萄酒种类识别SVM的参数优化——如何更好的提升分类器的性能SVM的回归预测分析——上证指数开盘指数预测SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测自组织竞争网络在模式分类中的应用——患者癌症发病预测SOM神经网络的数据分类——柴油机故障诊断Elman神经网络的数据预测——电力负荷预测模型研究概率神经网络的分类预测——基于PNN的变压器故障诊断神经网络变量筛选——基于BP的神经网络变量筛选LVQ神经网络的分类——乳腺肿瘤诊断LVQ神经网络的预测——人脸朝向识别小波神经网络的时间序列预测——短时交通流量预测模糊神经网络的预测算法——嘉陵江水质评价广义神经网络的聚类算法——网络入侵聚类粒子群优化算法的寻优算法——非线性函数极值寻优遗传算法优化计算——建模自变量降维基于灰色神经网络的预测算法研究——订单需求预测基于Kohonen网络的聚类算法——网络入侵聚类神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类。

谷歌人工智能写作项目:神经网络伪原创

神经网络算法实例说明有哪些?

在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等文案狗

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

MATLAB神经网络30个案例分析的图书目录

第1章P神经网络的数据分类——语音特征信号分类第2章BP神经网络的非线性系统建模——非线性函数拟合第3章遗传算法优化BP神经网络——非线性函数拟合第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优第5章基于BP_Adaboost的强分类器设计——公司财务预警建模第6章PID神经元网络解耦控制算法——多变量系统控制第7章RBF网络的回归——非线性函数回归的实现第8章GRNN的数据预测——基于广义回归神经网络的货运量预测第9章离散Hopfield神经网络的联想记忆——数字识别第10章离散Hopfield神经网络的分类——高校科研能力评价第11章连续Hopfield神经网络的优化——旅行商问题优化计算第12章SVM的数据分类预测——意大利葡萄酒种类识别第13章SVM的参数优化——如何更好的提升分类器的性能第14章SVM的回归预测分析——上证指数开盘指数预测第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测第17章SOM神经网络的数据分类——柴油机故障诊断第18章Elman神经网络的数据预测——电力负荷预测模型研究第19章概率神经网络的分类预测——基于PNN的变压器故障诊断第20章神经网络变量筛选——基于BP的神经网络变量筛选第21章LVQ神经网络的分类——乳腺肿瘤诊断第22章LVQ神经网络的预测——人脸朝向识别第23章小波神经网络的时间序列预测——短时交通流量预测第24章模糊神经网络的预测算法——嘉陵江水质评价第25章广义神经网络的聚类算法——网络入侵聚类第26章粒子群优化算法的寻优算法——非线性函数极值寻优第27章遗传算法优化计算——建模自变量降维第28章基于灰色神经网络的预测算法研究——订单需求预测第29章基于Kohonen网络的聚类算法——网络入侵聚类第30章神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类。

人工神经网络预测 20

我的毕业论文也是做神经网络预测的,关于这方面的程序或论文都挺多的,上网查一下,然后理解一下基本就可以了,但如果想做的更深的话就要系统的学习。

科技创新贵在新,你如果只是简单的看书的话可能出不来新的东西,毕竟短时间内你是找不出神经网络的缺陷在哪里,应如何创新。因为人们已经找出了针对已经发现的神经网络缺陷的解决方法。

如果有需要的话可以邮件联系,顺便探讨一下,我的邮箱是.。

matlab神经网络43个案例分析.pdf

哥们,这书还真没搜到PDF电子版的,估计人家就是想用来卖钱的,版权意识特么强。这么厚的书,又全是干货,才32块,很便宜了,真想要学习,推荐买一本,亚马逊,当当,京东上都有卖。

不过就算没买,到神经网络之家、matlabsky、数学中国、matlab中文论坛等一些免费论坛看看贴,一样学习。希望对你有帮助。

 

你可能感兴趣的:(神经网络,机器学习,支持向量机,python)