经过视网膜神经网络处理的信息,由神经节细胞的轴突——视神经纤维向中枢传递。
在视交叉的部位,100万条视神经纤维约有一半投射至同侧的丘脑外侧膝状体,另一半交叉到对侧,大部分投射至外侧膝状体,一小部分投射至上丘。
在上丘,视觉信息与躯体感觉信息和听觉信息相综合,使感觉反应与耳、眼、头的相关运动协调起来。
外侧膝状体的神经细胞的突起组成视辐射线投射到初级视皮层(布罗德曼氏17区,或皮层纹区),进而再向更高级的视中枢(纹状旁区,或布罗德曼氏18、19区等)投射。
从初级视皮层又有纤维返回上丘和外侧膝状体,这种反馈通路的功能意义还不清楚。
由于视神经的交叉,左侧的外侧膝状体和皮层与两个左半侧的视网膜相连,因此与视野的右半有关;右侧的外侧膝状体和右侧皮层的情况恰相反。
一侧的外侧膝状体和皮层都接受来自双眼的信息输入,每侧均与视觉世界的对侧一半有关。在视通路不同部位发生损伤时,就会出现相应的视野缺损,这在临床诊断中具有重要意义。
视觉信息在视觉中枢通路的各水平上经受进一步的处理。外侧膝状体只是视觉信息传递的中继站,其细胞感受野保持着同心圆式的对称中心-周边颉颃构型。
但到初级视皮层,除很少部分细胞仍然保持圆形感受野外,大部细胞表现出特殊的反应形式,它们不再对光点的照射呈良好反应,而是需要某种特殊的有效刺激。
初级视皮层中按其对刺激特异性的要求,可分为简单细胞和复杂细胞。简单细胞对在视野中一定部位的线段,光带或某种线形的边缘有反应。
特别是它们要求线段等都有特定的朝向,具有这一朝向(该细胞的最佳朝向)的刺激使细胞呈现最佳反应(脉冲频率最高)。
最佳朝向随细胞而异,通常限定得相当严格,以致顺时针或逆时针地改变刺激朝向10°或20°可使细胞反应显著减少乃至消失。
因此,简单细胞所反映的已不再是单个孤立的.光点,而是某种特殊排列的点群,这显然是一种重要的特征信息抽提。
复杂细胞具有简单细胞所具有的基本反应特性,但其主要特征是它们对线段在视野中的确切位置的要求并不很严,只要线段落在这些细胞的感受野中,又具有特定的朝向,位置即使稍许位移,反应的改变并不明显。
复杂细胞的另一个特征是,来自双眼的信息开始汇聚起来。
不象外侧膝状体的细胞和简单细胞那样,只对一侧眼的刺激有反应,而是对两眼的刺激都有反应,但反应量通常是不等的,总是一只眼占优势,即对该眼的刺激可引起细胞发放更高频率的脉冲。
这表明复杂细胞已开始对双眼的信息进行了初步的综合的处理。
谷歌人工智能写作项目:神经网络伪原创
沃伦·麦卡洛克和沃尔特·皮茨(1943)基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算模型写作猫。这种模型使得神经网络的研究分裂为两种不同研究思路。
一种主要关注大脑中的生物学过程,另一种主要关注神经网络在人工智能里的应用。一、赫布型学习二十世纪40年代后期,心理学家唐纳德·赫布根据神经可塑性的机制创造了一种对学习的假说,现在称作赫布型学习。
赫布型学习被认为是一种典型的非监督式学习规则,它后来的变种是长期增强作用的早期模型。从1948年开始,研究人员将这种计算模型的思想应用到B型图灵机上。
法利和韦斯利·A·克拉克(1954)首次使用计算机,当时称作计算器,在MIT模拟了一个赫布网络。纳撒尼尔·罗切斯特(1956)等人模拟了一台 IBM 704计算机上的抽象神经网络的行为。
弗兰克·罗森布拉特创造了感知机。这是一种模式识别算法,用简单的加减法实现了两层的计算机学习网络。罗森布拉特也用数学符号描述了基本感知机里没有的回路,例如异或回路。
这种回路一直无法被神经网络处理,直到保罗·韦伯斯(1975)创造了反向传播算法。在马文·明斯基和西摩尔·派普特(1969)发表了一项关于机器学习的研究以后,神经网络的研究停滞不前。
他们发现了神经网络的两个关键问题。第一是基本感知机无法处理异或回路。第二个重要的问题是电脑没有足够的能力来处理大型神经网络所需要的很长的计算时间。
直到计算机具有更强的计算能力之前,神经网络的研究进展缓慢。二、反向传播算法与复兴后来出现的一个关键的进展是保罗·韦伯斯发明的反向传播算法(Werbos 1975)。
这个算法有效地解决了异或的问题,还有更普遍的训练多层神经网络的问题。在二十世纪80年代中期,分布式并行处理(当时称作联结主义)流行起来。
戴维·鲁姆哈特和詹姆斯·麦克里兰德的教材对于联结主义在计算机模拟神经活动中的应用提供了全面的论述。神经网络传统上被认为是大脑中的神经活动的简化模型,虽然这个模型和大脑的生理结构之间的关联存在争议。
人们不清楚人工神经网络能多大程度地反映大脑的功能。
支持向量机和其他更简单的方法(例如线性分类器)在机器学习领域的流行度逐渐超过了神经网络,但是在2000年代后期出现的深度学习重新激发了人们对神经网络的兴趣。
三、2006年之后的进展人们用CMOS创造了用于生物物理模拟和神经形态计算的计算设备。最新的研究显示了用于大型主成分分析和卷积神经网络的纳米设备具有良好的前景。
如果成功的话,这会创造出一种新的神经计算设备,因为它依赖于学习而不是编程,并且它从根本上就是模拟的而不是数字化的,虽然它的第一个实例可能是数字化的CMOS设备。
在2009到2012年之间,Jürgen Schmidhuber在Swiss AI Lab IDSIA的研究小组研发的循环神经网络和深前馈神经网络赢得了8项关于模式识别和机器学习的国际比赛。
例如,Alex Graves et al.的双向、多维的LSTM赢得了2009年ICDAR的3项关于连笔字识别的比赛,而且之前并不知道关于将要学习的3种语言的信息。
IDSIA的Dan Ciresan和同事根据这个方法编写的基于GPU的实现赢得了多项模式识别的比赛,包括IJCNN 2011交通标志识别比赛等等。
他们的神经网络也是第一个在重要的基准测试中(例如IJCNN 2012交通标志识别和NYU的扬·勒丘恩(Yann LeCun)的MNIST手写数字问题)能达到或超过人类水平的人工模式识别器。
类似1980年Kunihiko Fukushima发明的neocognitron和视觉标准结构(由David H. Hubel和Torsten Wiesel在初级视皮层中发现的那些简单而又复杂的细胞启发)那样有深度的、高度非线性的神经结构可以被多伦多大学杰弗里·辛顿实验室的非监督式学习方法所训练。
2012年,神经网络出现了快速的发展,主要原因在于计算技术的提高,使得很多复杂的运算变得成本低廉。以AlexNet为标志,大量的深度网络开始出现。
2014年出现了残差神经网络,该网络极大解放了神经网络的深度限制,出现了深度学习的概念。
构成典型的人工神经网络具有以下三个部分:1、结构(Architecture)结构指定了网络中的变量和它们的拓扑关系。
例如,神经网络中的变量可以是神经元连接的权重(weights)和神经元的激励值(activities of the neurons)。
2、激励函数(Activation Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。
一般激励函数依赖于网络中的权重(即该网络的参数)。3、学习规则(Learning Rule)学习规则指定了网络中的权重如何随着时间推进而调整。这一般被看做是一种长时间尺度的动力学规则。
一般情况下,学习规则依赖于神经元的激励值。它也可能依赖于监督者提供的目标值和当前权重的值。例如,用于手写识别的一个神经网络,有一组输入神经元。输入神经元会被输入图像的数据所激发。
在激励值被加权并通过一个函数(由网络的设计者确定)后,这些神经元的激励值被传递到其他神经元。这个过程不断重复,直到输出神经元被激发。最后,输出神经元的激励值决定了识别出来的是哪个字母。
这些概念大家经常碰到,可能会有一些混淆,我这里解释下。 人工智能,顾名思义ArtificialIntelligence,缩写是大家熟知的AI。
是让计算机具备人类拥有的能力——感知、学习、记忆、推理、决策等。
细分的话,机器感知包括机器视觉、NLP,学习有模式识别、机器学习、增强学习、迁移学习等,记忆如知识表示,决策包括规划、数据挖掘、专家系统等。上述划分可能会有一定逻辑上的重叠,但更利于大家理解。
其中,机器学习(MachineLearning,ML)逐渐成为热门学科,主要目的是设计和分析一些学习算法,让计算机从数据中获得一些决策函数,从而可以帮助人们解决一些特定任务,提高效率。
它的研究领域涉及了概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。
神经网络,主要指人工神经网络(ArtificialNeural Network,ANN),是机器学习算法中比较接近生物神经网络特性的数学模型。
通过模拟人类神经网络的结构和功能,由大量“神经元”构成了一个复杂的神经网络,模拟神经元的刺激和抑制的过程,最终完成复杂运算。
深度神经网络,大家可以理解为更加复杂的神经网络,随着深度学习的快速发展,它已经超越了传统的多层感知机神经网络,而拥有对空间结构进行处理(卷积神经网络)和时间序列进行处理(递归神经网络)的能力。
所以上面的四种概念中,人工智能是最宽泛的概念,机器学习是其中最重要的学科,神经网络是机器学习的一种方式,而深度神经网络是神经网络的加强版。记住这个即可。
深度学习框架,尤其是基于人工神经网络的框架可以追溯到1980年福岛邦彦提出的新认知机[2],而人工神经网络的历史更为久远。
1989年,燕乐存(Yann LeCun)等人开始将1974年提出的标准反向传播算法[3]应用于深度神经网络,这一网络被用于手写邮政编码识别。
尽管算法可以成功执行,但计算代价非常巨大,神经网路的训练时间达到了3天,因而无法投入实际使用[4]。
许多因素导致了这一缓慢的训练过程,其中一种是由于尔根·施密德胡伯(Jürgen Schmidhuber)的学生赛普·霍克赖特(Sepp Hochreiter)于1991年提出的梯度消失问题[5][6]。
与此同时,神经网络也受到了其他更加简单模型的挑战,支持向量机等模型在20世纪90年代到21世纪初成为更加流行的机器学习算法。“深度学习”这一概念从2007年前后开始受到关注。
当时,杰弗里·辛顿(Geoffrey Hinton)和鲁斯兰·萨拉赫丁诺夫(Ruslan Salakhutdinov)提出了一种在前馈神经网络中进行有效训练的算法。
这一算法将网络中的每一层视为无监督的受限玻尔兹曼机,再使用有监督的反向传播算法进行调优[7]。
在此之前的1992年,在更为普遍的情形下,施密德胡伯也曾在递归神经网络上提出一种类似的训练方法,并在实验中证明这一训练方法能够有效提高有监督学习的执行速度[8][9].自深度学习出现以来,它已成为很多领域,尤其是在计算机视觉和语音识别中,成为各种领先系统的一部分。
在通用的用于检验的数据集,例如语音识别中的TIMIT和图像识别中的ImageNet, Cifar10上的实验证明,深度学习能够提高识别的精度。硬件的进步也是深度学习重新获得关注的重要因素。
高性能图形处理器的出现极大地提高了数值和矩阵运算的速度,使得机器学习算法的运行时间得到了显著的缩短[10][11]。
基本概念[编辑]深度学习的基础是机器学习中的分散表示(distributed representation)。分散表示假定观测值是由不同因子相互作用生成。
在此基础上,深度学习进一步假定这一相互作用的过程可分为多个层次,代表对观测值的多层抽象。不同的层数和层的规模可用于不同程度的抽象[1]。
深度学习运用了这分层次抽象的思想,更高层次的概念从低层次的概念学习得到。
这一分层结构常常使用贪婪算法逐层构建而成,并从中选取有助于机器学习的更有效的特征[1].不少深度学习算法都以无监督学习的形式出现,因而这些算法能被应用于其他算法无法企及的无标签数据,这一类数据比有标签数据更丰富,也更容易获得。
这一点也为深度学习赢得了重要的优势[1]。人工神经网络下的深度学习[编辑]一部分最成功的深度学习方法涉及到对人工神经网络的运用。
人工神经网络受到了1959年由诺贝尔奖得主大卫·休伯尔(David H. Hubel)和托斯坦·威泽尔(Torsten Wiesel)提出的理论启发。
休伯尔和威泽尔发现,在大脑的初级视觉皮层中存在两种细胞:简单细胞和复杂细胞,这两种细胞承担不同层次的视觉感知功能。受此启发,许多神经网络模型也被设计为不同节点之间的分层模型[12]。
福岛邦彦提出的新认知机引入了使用无监督学习训练的卷积神经网络。燕乐存将有监督的反向传播算法应用于这一架构[13]。
事实上,从反向传播算法自20世纪70年代提出以来,不少研究者都曾试图将其应用于训练有监督的深度神经网络,但最初的尝试大都失败。
赛普·霍克赖特(Sepp Hochreiter)在其博士论文中将失败的原因归结为梯度消失,这一现象同时在深度前馈神经网络和递归神经网络中出现,后者的训练过程类似深度网络。
在分层训练的过程中,本应用于修正模型参数的误差随着层数的增加指数递减,这导致了模型训练的效率低下[14][15]。为了解决这一问题,研究者们提出了一些不同的方法。
于尔根·施密德胡伯(Jürgen Schmidhuber)于1992年提出多层级网络,利用无监督学习训练深度神经网络的每一层,再使用反向传播算法进行调优。
在这一模型中,神经网络中的每一层都代表观测变量的一种压缩表示,这一表示也被传递到下一层网络[8]。
另一种方法是赛普·霍克赖特和于尔根·施密德胡伯提出的长短期记忆神经网络(long short term memory,LSTM)[16]。
2009年,在ICDAR 2009举办的连笔手写识别竞赛中,在没有任何先验知识的情况下,深度多维长短期记忆神经网络取得了其中三场比赛的胜利[17][18]。
斯文·贝克提出了在训练时只依赖梯度符号的神经抽象金字塔模型,用以解决图像重建和人脸定位的问题[19]。
其他方法同样采用了无监督预训练来构建神经网络,用以发现有效的特征,此后再采用有监督的反向传播以区分有标签数据。辛顿等人于2006年提出的深度模型提出了使用多层隐变量学习高层表示的方法。
这一方法使用斯摩棱斯基于1986年提出的受限玻尔兹曼机[20]对每一个包含高层特征的层进行建模。模型保证了数据的对数似然下界随着层数的提升而递增。
当足够多的层数被学习完毕,这一深层结构成为一个生成模型,可以通过自上而下的采样重构整个数据集[21]。辛顿声称这一模型在高维结构化数据上能够有效低提取特征[22]。
吴恩达和杰夫·迪恩(Jeff Dean)领导的谷歌大脑(英语:Google Brain)团队创建了一个仅通过YouTube视频学习高层概念(例如猫)的神经网络[23] [24]。
其他方法依赖了现代电子计算机的强大计算能力,尤其是GPU。
2010年,在于尔根·施密德胡伯位于瑞士人工智能实验室IDSIA的研究组中,丹·奇雷尚(Dan Ciresan)和他的同事展示了利用GPU直接执行反向传播算法而忽视梯度消失问题的存在。
这一方法在燕乐存等人给出的手写识别MNIST数据集上战胜了已有的其他方法[10]。
截止2011年,前馈神经网络深度学习中最新的方法是交替使用卷积层(convolutional layers)和最大值池化层(max-pooling layers)并加入单纯的分类层作为顶端。
训练过程也无需引入无监督的预训练[25][26]。从2011年起,这一方法的GPU实现[25]多次赢得了各类模式识别竞赛的胜利,包括IJCNN 2011交通标志识别竞赛[27]和其他比赛。
这些深度学习算法也是最先在某些识别任务上达到和人类表现具备同等竞争力的算法[28]。深度学习结构[编辑]深度神经网络是一种具备至少一个隐层的神经网络。
与浅层神经网络类似,深度神经网络也能够为复杂非线性系统提供建模,但多出的层次为模型提供了更高的抽象层次,因而提高了模型的能力。
深度神经网络通常都是前馈神经网络,但也有语言建模等方面的研究将其拓展到递归神经网络[29]。
卷积深度神经网络(Covolutional Neuron Networks, CNN)在计算机视觉领域得到了成功的应用[30]。
此后,卷积神经网络也作为听觉模型被使用在自动语音识别领域,较以往的方法获得了更优的结果[31]。
深度神经网络[编辑]深度神经网络(deep neuron networks, DNN)是一种判别模型,可以使用反向传播算法进行训练。
权重更新可以使用下式进行随机梯度下降求解:其中,为学习率,为代价函数。这一函数的选择与学习的类型(例如监督学习、无监督学习、增强学习)以及激活函数相关。
例如,为了在一个多分类问题上进行监督学习,通常的选择是使用Softmax函数作为激活函数,而使用交叉熵作为代价函数。Softmax函数定义为,其中代表类别的概率,而和分别代表对单元和的输入。
交叉熵定义为,其中代表输出单元的目标概率,代表应用了激活函数后对单元的概率输出[32]。深度神经网络的问题[编辑]与其他神经网络模型类似,如果仅仅是简单地训练,深度神经网络可能会存在很多问题。
常见的两类问题是过拟合和过长的运算时间。深度神经网络很容易产生过拟合现象,因为增加的抽象层使得模型能够对训练数据中较为罕见的依赖关系进行建模。
对此,权重递减(正规化)或者稀疏(-正规化)等方法可以利用在训练过程中以减小过拟合现象[33]。
另一种较晚用于深度神经网络训练的正规化方法是丢弃法("dropout" regularization),即在训练中随机丢弃一部分隐层单元来避免对较为罕见的依赖进行建模[34]。
反向传播算法和梯度下降法由于其实现简单,与其他方法相比能够收敛到更好的局部最优值而成为神经网络训练的通行方法。
但是,这些方法的计算代价很高,尤其是在训练深度神经网络时,因为深度神经网络的规模(即层数和每层的节点数)、学习率、初始权重等众多参数都需要考虑。
扫描所有参数由于时间代价的原因并不可行,因而小批量训练(mini-batching),即将多个训练样本组合进行训练而不是每次只使用一个样本进行训练,被用于加速模型训练[35]。
而最显著地速度提升来自GPU,因为矩阵和向量计算非常适合使用GPU实现。但使用大规模集群进行深度神经网络训练仍然存在困难,因而深度神经网络在训练并行化方面仍有提升的空间。
深度信念网络[编辑]一个包含完全连接可见层和隐层的受限玻尔兹曼机(RBM)。注意到可见层单元和隐层单元内部彼此不相连。
深度信念网络(deep belief networks,DBN)是一种包含多层隐单元的概率生成模型,可被视为多层简单学习模型组合而成的复合模型[36]。
深度信念网络可以作为深度神经网络的预训练部分,并为网络提供初始权重,再使用反向传播或者其他判定算法作为调优的手段。
这在训练数据较为缺乏时很有价值,因为不恰当的初始化权重会显著影响最终模型的性能,而预训练获得的权重在权值空间中比随机权重更接近最优的权重。这不仅提升了模型的性能,也加快了调优阶段的收敛速度[37]。
深度信念网络中的每一层都是典型的受限玻尔兹曼机(restricted Boltzmann machine,RBM),可以使用高效的无监督逐层训练方法进行训练。
受限玻尔兹曼机是一种无向的基于能量的生成模型,包含一个输入层和一个隐层。图中对的边仅在输入层和隐层之间存在,而输入层节点内部和隐层节点内部则不存在边。
单层RBM的训练方法最初由杰弗里·辛顿在训练“专家乘积”中提出,被称为对比分歧(contrast divergence, CD)。
对比分歧提供了一种对最大似然的近似,被理想地用于学习受限玻尔兹曼机的权重[35]。当单层RBM被训练完毕后,另一层RBM可被堆叠在已经训练完成的RBM上,形成一个多层模型。
每次堆叠时,原有的多层网络输入层被初始化为训练样本,权重为先前训练得到的权重,该网络的输出作为新增RBM的输入,新的RBM重复先前的单层训练过程,整个过程可以持续进行,直到达到某个期望中的终止条件[38]。
尽管对比分歧对最大似然的近似十分粗略(对比分歧并不在任何函数的梯度方向上),但经验结果证实该方法是训练深度结构的一种有效的方法[35]。
卷积神经网络[编辑]主条目:卷积神经网络卷积神经网络(convolutional neuron networks,CNN)由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。
这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更优的结果。这一模型也可以使用反向传播算法进行训练。
相比较其他深度、前馈神经网络,卷积神经网络需要估计的参数更少,使之成为一种颇具吸引力的深度学习结构[39]。
卷积深度信念网络[编辑]卷积深度信念网络(convolutional deep belief networks,CDBN)是深度学习领域较新的分支。
在结构上,卷积深度信念网络与卷积神经网络在结构上相似。因此,与卷积神经网络类似,卷积深度信念网络也具备利用图像二维结构的能力,与此同时,卷积深度信念网络也拥有深度信念网络的预训练优势。
卷积深度信念网络提供了一种能被用于信号和图像处理任务的通用结构,也能够使用类似深度信念网络的训练方法进行训练[40]。
结果[编辑]语音识别[编辑]下表中的结果展示了深度学习在通行的TIMIT数据集上的结果。TIMIT包含630人的语音数据,这些人持八种常见的美式英语口音,每人阅读10句话。
这一数据在深度学习发展之初常被用于验证深度学习结构[41]。TIMIT数据集较小,使得研究者可以在其上实验不同的模型配置。
方法声音误差率 (PER, %)随机初始化RNN 26.1 贝叶斯三音子GMM-HMM 25.6 单音子重复初始化DNN 23.4 单音子DBN-DNN 22.4 带BMMI训练的三音子GMM-HMM 21.7 共享池上的单音子DBN-DNN 20.7 卷积DNN 20.0 图像分类[编辑]图像分类领域中一个公认的评判数据集是MNIST数据集。
MNIST由手写阿拉伯数字组成,包含60,000个训练样本和10,000个测试样本。与TIMIT类似,它的数据规模较小,因而能够很容易地在不同的模型配置下测试。
Yann LeCun的网站给出了多种方法得到的实验结果[42]。截至2012年,最好的判别结果由Ciresan等人在当年给出,这一结果的错误率达到了0.23%[43]。
深度学习与神经科学[编辑]计算机领域中的深度学习与20世纪90年代由认知神经科学研究者提出的大脑发育理论(尤其是皮层发育理论)密切相关[44]。
对这一理论最容易理解的是杰弗里·艾尔曼(Jeffrey Elman)于1996年出版的专著《对天赋的再思考》(Rethinking Innateness)[45](参见斯拉格和约翰逊[46]以及奎兹和赛杰诺维斯基[47]的表述)。
由于这些理论给出了实际的神经计算模型,因而它们是纯计算驱动的深度学习模型的技术先驱。这些理论指出,大脑中的神经元组成了不同的层次,这些层次相互连接,形成一个过滤体系。
在这些层次中,每层神经元在其所处的环境中获取一部分信息,经过处理后向更深的层级传递。这与后来的单纯与计算相关的深度神经网络模型相似。这一过程的结果是一个与环境相协调的自组织的堆栈式的转换器。
正如1995年在《纽约时报》上刊登的那样,“……婴儿的大脑似乎受到所谓‘营养因素’的影响而进行着自我组织……大脑的不同区域依次相连,不同层次的脑组织依照一定的先后顺序发育成熟,直至整个大脑发育成熟。
”[48]深度结构在人类认知演化和发展中的重要性也在认知神经学家的关注之中。发育时间的改变被认为是人类和其他灵长类动物之间智力发展差异的一个方面[49]。
在灵长类中,人类的大脑在出生后的很长时间都具备可塑性,但其他灵长类动物的大脑则在出生时就几乎完全定型。
因而,人类在大脑发育最具可塑性的阶段能够接触到更加复杂的外部场景,这可能帮助人类的大脑进行调节以适应快速变化的环境,而不是像其他动物的大脑那样更多地受到遗传结构的限制。
这样的发育时间差异也在大脑皮层的发育时间和大脑早期自组织中从刺激环境中获取信息的改变得到体现。当然,伴随着这一可塑性的是更长的儿童期,在此期间人需要依靠抚养者和社会群体的支持和训练。
因而这一理论也揭示了人类演化中文化和意识共同进化的现象[50]。公众视野中的深度学习[编辑]深度学习常常被看作是通向真正人工智能的重要一步[51],因而许多机构对深度学习的实际应用抱有浓厚的兴趣。
2013年12月,Facebook宣布雇用燕乐存为其新建的人工智能实验室的主管,这一实验室将在加州、伦敦和纽约设立分支机构,帮助Facebook研究利用深度学习算法进行类似自动标记照片中用户姓名这样的任务[52]。
2013年3月,杰弗里·辛顿和他的两位研究生亚历克斯·克里泽夫斯基和伊利娅·苏特斯科娃被谷歌公司雇用,以提升现有的机器学习产品并协助处理谷歌日益增长的数据。
谷歌同时并购了辛顿创办的公司DNNresearch[53]。批评[编辑]对深度学习的主要批评是许多方法缺乏理论支撑。大多数深度结构仅仅是梯度下降的某些变式。
尽管梯度下降已经被充分地研究,但理论涉及的其他算法,例如对比分歧算法,并没有获得充分的研究,其收敛性等问题仍不明确。深度学习方法常常被视为黑盒,大多数的结论确认都由经验而非理论来确定。
也有学者认为,深度学习应当被视为通向真正人工智能的一条途径,而不是一种包罗万象的解决方案。尽管深度学习的能力很强,但和真正的人工智能相比,仍然缺乏诸多重要的能力。
理论心理学家加里·马库斯(Gary Marcus)指出:就现实而言,深度学习只是建造智能机器这一更大挑战中的一部分。
这些技术缺乏表达因果关系的手段……缺乏进行逻辑推理的方法,而且远没有具备集成抽象知识,例如物品属性、代表和典型用途的信息。
最为强大的人工智能系统,例如IBM的人工智能系统沃森,仅仅把深度学习作为一个包含从贝叶斯推理和演绎推理等技术的复杂技术集合中的组成部分[54]。
一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;(3)分类:把输入向量所定义的合适方式进行分类;(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。联系:BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
扩展资料:1、BP神经网络优劣势BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。
网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。②容易陷入局部极小值。③网络层数、神经元个数的选择没有相应的理论指导。④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面①具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。③具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
参考资料:百度百科—前馈神经网络百度百科—BP神经网络百度百科—卷积神经网络百度百科—人工神经网络。
福岛邦彦。2021年4月29日,福岛邦彦(Kunihiko Fukushima)获得 2021 年鲍尔科学成就奖。
他为深度学习做出了杰出贡献,其最有影响力的工作当属「Neocognitron」卷积神经网络架构。
其实,熟悉这位Jürgen Schmidhuber人都知道,他此前一直对自己在深度学习领域的早期原创性成果未能得到业界广泛承认而耿耿于怀。
1979年,福岛博士在STRL开发了一种用于模式识别的神经网络模型:Neocognitron。很陌生对吧?
但这个Neocognitron用今天的话来说,叫卷积神经网络(CNN),是深度神经网络基本结构的最伟大发明之一,也是当前人工智能的核心技术。什么?
卷积神经网络不是一个叫Yann LeCun的大佬发明的吗?怎么又换成了福岛邦彦(Kunihiko Fukushima)了?
严格意义上讲,LeCun是第一个使用误差反向传播训练卷积神经网络(CNN)架构的人,但他并不是第一个发明这个结构的人。
而福岛博士引入的Neocognitron,是第一个使用卷积和下采样的神经网络,也是卷积神经网络的雏形。
福岛邦彦(Kunihiko Fukushima)设计的具有学习能力的人工多层神经网络,可以模仿大脑的视觉网络,这种「洞察力」成为现代人工智能技术的基础。
福岛博士的工作带来了一系列实际应用,从自动驾驶汽车到面部识别,从癌症检测到洪水预测,还会有越来越多的应用。