hadoop3.X学习笔记进阶篇-MapReduce

  • MapReduce概述
  • MapReduce框架原理
  • MapReduce内核源码解析
  • Hadoop数据压缩

MapReduce概述

1.1 MapReduce定义

MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。
MapReduce核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

1.2 MapReduce优缺点

1.2.1 优点

1)MapReduce易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使得MapReduce编程变得非常流行。
2)良好的扩展性
当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。
3)高容错性
MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性。比如**其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,**而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
4)适合PB级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。

1.2.2 缺点

1)不擅长实时计算
MapReduce无法像MySQL一样,在毫秒或者秒级内返回结果。
2)不擅长流式计算
流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
3)不擅长DAG(有向无环图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下

1.3常用数据序列化类型

Java类型 Hadoop Writable类型
Boolean BooleanWritable
Byte ByteWritable
Int IntWritable
Float FloatWritable
Long LongWritable
Double DoubleWritable
String Text
Map MapWritable
Array ArrayWritable
Null NullWritable

1.4 MapReduce编程规范

用户编写的程序分成三个部分:Mapper、Reducer和Driver。
hadoop3.X学习笔记进阶篇-MapReduce_第1张图片
hadoop3.X学习笔记进阶篇-MapReduce_第2张图片

1.5 MapReduce核心思想

hadoop3.X学习笔记进阶篇-MapReduce_第3张图片

(1)分布式的运算程序往往需要分成至少2个阶段。
(2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。
(3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。
(4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。
总结:分析WordCount数据流走向深入理解MapReduce核心思想。

1.6 MapReduce进程

一个完整的MapReduce程序在分布式运行时有三类实例进程:

(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责Map阶段的整个数据处理流程。
(3)ReduceTask:负责Reduce阶段的整个数据处理流程。

MapReduce框架原理

hadoop3.X学习笔记进阶篇-MapReduce_第4张图片

2.1 InputFormat数据输入

2.1.1 切片与MapTask并行度决定机制

hadoop3.X学习笔记进阶篇-MapReduce_第5张图片

2.1.2 Job提交流程源码和切片源码详解

1)Job提交流程源码详解

waitForCompletion()

submit();

// 1建立连接
	connect();	
		// 1)创建提交Job的代理
		new Cluster(getConfiguration());
			// (1)判断是本地运行环境还是yarn集群运行环境
			initialize(jobTrackAddr, conf); 

		// 2 提交job
	submitter.submitJobInternal(Job.this, cluster)

	// 1)创建给集群提交数据的Stag路径
	Path jobStagingArea = JobSubmissionFiles.getStagingDir(cluster, conf);

	// 2)获取jobid ,并创建Job路径
	JobID jobId = submitClient.getNewJobID();

	// 3)拷贝jar包到集群
	copyAndConfigureFiles(job, submitJobDir);	
	rUploader.uploadFiles(job, jobSubmitDir);

	// 4)计算切片,生成切片规划文件
	writeSplits(job, submitJobDir);
		maps = writeNewSplits(job, jobSubmitDir);
		input.getSplits(job);

	// 5)向Stag路径写XML配置文件
	writeConf(conf, submitJobFile);
	conf.writeXml(out);

	// 6)提交Job,返回提交状态
status = submitClient.submitJob(jobId, submitJobDir.toString(), job.getCredentials());

hadoop3.X学习笔记进阶篇-MapReduce_第6张图片
2)FileInputFormat切片源码解析(input.getSplits(job))
hadoop3.X学习笔记进阶篇-MapReduce_第7张图片

2.1.3 FileInputFormat切片机制

hadoop3.X学习笔记进阶篇-MapReduce_第8张图片
hadoop3.X学习笔记进阶篇-MapReduce_第9张图片

2.1.4 TextInputFormat

FileInputFormat常见的接口实现类包括:TextInputFormatKeyValueTextInputFormatNLineInputFormatCombineTextInputFormat自定义InputFormat等。

2)TextInputFormat

TextInputFormat是默认的FileInputFormat实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable类型。值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。

3.1.5 CombineTextInputFormat切片机制

框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会是一个单独的切片,都会交给一个MapTask,这样如果有大量小文件,就会产生大量的MapTask,处理效率极其低下。
1)应用场景:
CombineTextInputFormat用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。

2)虚拟存储切片最大值设置
CombineTextInputFormat.setMaxInputSplitSize(job, 4194304);// 4m
注意:虚拟存储切片最大值设置最好根据实际的小文件大小情况来设置具体的值。
3)切片机制
生成切片过程包括:虚拟存储过程和切片过程二部分。

hadoop3.X学习笔记进阶篇-MapReduce_第10张图片

(1)虚拟存储过程:
将输入目录下所有文件大小,依次和设置的setMaxInputSplitSize值比较,如果不大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍,那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值2倍,此时将文件均分成2个虚拟存储块(防止出现太小切片)。
例如setMaxInputSplitSize值为4M,输入文件大小为8.02M,则先逻辑上分成一个4M。剩余的大小为4.02M,如果按照4M逻辑划分,就会出现0.02M的小的虚拟存储文件,所以将剩余的4.02M文件切分成(2.01M和2.01M)两个文件。
(2)切片过程:
(a)判断虚拟存储的文件大小是否大于setMaxInputSplitSize值,大于等于则单独形成一个切片。
(b)如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
(c)测试举例:有4个小文件大小分别为1.7M、5.1M、3.4M以及6.8M这四个小文件,则虚拟存储之后形成6个文件块,大小分别为: 1.7M,(2.55M、2.55M),3.4M以及(3.4M、3.4M) 最终会形成3个切片,大小分别为: (1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M

2.2 MapReduce工作流程

hadoop3.X学习笔记进阶篇-MapReduce_第11张图片
hadoop3.X学习笔记进阶篇-MapReduce_第12张图片
上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

(1)MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
(5)ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
(6)ReduceTask会抓取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
注意:
(1)Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb默认100M。

2.2 Shuffle机制

Map方法之后,Reduce方法之前的数据处理过程称之为Shuffle
hadoop3.X学习笔记进阶篇-MapReduce_第13张图片

MapReduce内核源码解析

3.1 MapTask工作机制

hadoop3.X学习笔记进阶篇-MapReduce_第14张图片

(1)Read阶段:MapTask通过InputFormat获得的RecordReader,从输入InputSplit中解析出一个个key/value。
(2)Map阶段:该节点主要是将解析出的key/value交给用户编写map()函数处理,并产生一系列新的key/value。
(3)Collect收集阶段:在用户编写map()函数中,当数据处理完成后,一般会调用OutputCollector.collect()输出结果。在该函数内部,它会将生成的key/value分区(调用Partitioner),并写入一个环形内存缓冲区中。
(4)Spill阶段:即“溢写”,当环形缓冲区满后,MapReduce会将数据写到本地磁盘上,生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
溢写阶段详情:
步骤1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号Partition进行排序,然后按照key进行排序。这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照key有序。
步骤2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件output/spillN.out(N表示当前溢写次数)中。如果用户设置了Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
步骤3:将分区数据的元信息写到内存索引数据结构SpillRecord中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大小超过1MB,则将内存索引写到文件output/spillN.out.index中。
(5)Merge阶段:当所有数据处理完成后,MapTask对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
当所有数据处理完后,MapTask会将所有临时文件合并成一个大文件,并保存到文件output/file.out中,同时生成相应的索引文件output/file.out.index。
在进行文件合并过程中,MapTask以分区为单位进行合并。对于某个分区,它将采用多轮递归合并的方式。每轮合并mapreduce.task.io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
让每个MapTask最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。

3.2 ReduceTask工作机制

hadoop3.X学习笔记进阶篇-MapReduce_第15张图片

(1)Copy阶段:ReduceTask从各个MapTask上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
(2)Sort阶段:在远程拷贝数据的同时,ReduceTask启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。按照MapReduce语义,用户编写reduce()函数输入数据是按key进行聚集的一组数据。为了将key相同的数据聚在一起,Hadoop采用了基于排序的策略。由于各个MapTask已经实现对自己的处理结果进行了局部排序,因此,ReduceTask只需对所有数据进行一次归并排序即可。
(3)Reduce阶段:reduce()函数将计算结果写到HDFS上。

3.3 ReduceTask并行度决定机制

回顾:MapTask并行度由切片个数决定,切片个数由输入文件和切片规则决定。
思考:ReduceTask并行度由谁决定?
注意事项:
hadoop3.X学习笔记进阶篇-MapReduce_第16张图片

3.4 MapTask & ReduceTask源码解析

1)MapTask源码解析流程

=================== MapTask ===================
context.write(k, NullWritable.get());   //自定义的map方法的写出,进入
output.write(key, value);  
	//MapTask727行,收集方法,进入两次 
collector.collect(key, value,partitioner.getPartition(key, value, partitions));
	HashPartitioner(); //默认分区器
collect()  //MapTask1082行 map端所有的kv全部写出后会走下面的close方法
	close() //MapTask732行
	collector.flush() // 溢出刷写方法,MapTask735行,提前打个断点,进入
sortAndSpill() //溢写排序,MapTask1505行,进入
	sorter.sort()   QuickSort //溢写排序方法,MapTask1625行,进入
mergeParts(); //合并文件,MapTask1527行,进入
	
collector.close(); //MapTask739行,收集器关闭,即将进入ReduceTask

2)ReduceTask源码解析流程

=================== ReduceTask ===================
if (isMapOrReduce())  //reduceTask324行,提前打断点
initialize()   // reduceTask333行,进入
init(shuffleContext);  // reduceTask375行,走到这需要先给下面的打断点
        totalMaps = job.getNumMapTasks(); // ShuffleSchedulerImpl第120行,提前打断点
         merger = createMergeManager(context); //合并方法,Shuffle第80行
			// MergeManagerImpl第232 235行,提前打断点
			this.inMemoryMerger = createInMemoryMerger(); //内存合并
			this.onDiskMerger = new OnDiskMerger(this); //磁盘合并
rIter = shuffleConsumerPlugin.run();
		eventFetcher.start();  //开始抓取数据,Shuffle第107行,提前打断点
		eventFetcher.shutDown();  //抓取结束,Shuffle第141行,提前打断点
		copyPhase.complete();   //copy阶段完成,Shuffle第151行
		taskStatus.setPhase(TaskStatus.Phase.SORT);  //开始排序阶段,Shuffle第152行
	sortPhase.complete();   //排序阶段完成,即将进入reduce阶段 reduceTask382行
reduce();  //reduce阶段调用的就是我们自定义的reduce方法,会被调用多次
	cleanup(context); //reduce完成之前,会最后调用一次Reducer里面的cleanup方法

Hadoop数据压缩

4.1 概述

1)压缩的好处和坏处

压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销

2)压缩原则

(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩

4.2 MR支持的压缩编码

1)压缩算法对比介绍

压缩格式 Hadoop自带? 算法 文件扩展名 是否可切片 换成压缩格式后,原来的程序是否需要修改
DEFLATE 是,直接使用 DEFLATE .deflate 和文本处理一样,不需要修改
Gzip 是,直接使用 DEFLATE .gz 和文本处理一样,不需要修改
bzip2 是,直接使用 bzip2 .bz2 和文本处理一样,不需要修改
LZO 否,需要安装 LZO .lzo 需要建索引,还需要指定输入格式
Snappy 是,直接使用 Snappy .snappy 和文本处理一样,不需要修改

2)压缩性能的比较

压缩算法 原始文件大小 压缩文件大小 压缩速度 解压速度
gzip 8.3GB 1.8GB 17.5MB/s 58MB/s
bzip2 8.3GB 1.1GB 2.4MB/s 9.5MB/s
LZO 8.3GB 2.9GB 49.3MB/s 74.6MB/s

http://google.github.io/snappy/
Snappy is a compression/decompression library. It does not aim for maximum compression, or compatibility with any other compression library; instead, it aims for very high speeds and reasonable compression. For instance, compared to the fastest mode of zlib, Snappy is an order of magnitude faster for most inputs, but the resulting compressed files are anywhere from 20% to 100% bigger.On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.

4.3 压缩方式选择

压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否可以支持切片

4.3.1 Gzip压缩

优点:压缩率比较高;
缺点:不支持Split;压缩/解压速度一般;

4.3.2 Bzip2压缩

优点:压缩率高;支持Split;
缺点:压缩/解压速度慢。

4.3.3 Lzo压缩

优点:压缩/解压速度比较快;支持Split;
缺点:压缩率一般;想支持切片需要额外创建索引。

4.3.4 Snappy压缩

优点:压缩和解压缩速度快;
缺点:不支持Split;压缩率一般;

4.3.5 压缩位置选择

压缩可以在MapReduce作用的任意阶段启用。
hadoop3.X学习笔记进阶篇-MapReduce_第17张图片

4.4 压缩参数配置

1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器

压缩格式 对应的编码/解码器
DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzip2 org.apache.hadoop.io.compress.BZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec
Snappy org.apache.hadoop.io.compress.SnappyCodec

2)要在Hadoop中启用压缩,可以配置如下参数

参数 默认值 阶段 建议
io.compression.codecs(在core-site.xml中配置) 无,这个需要在命令行输入hadoop checknative查看 输入压缩 Hadoop使用文件扩展名判断是否支持某种编解码器
mapreduce.map.output.compress(在mapred-site.xml中配置) false mapper输出 这个参数设为true启用压缩
mapreduce.map.output.compress.codec(在mapred-site.xml中配置 org.apache.hadoop.io.compress.DefaultCodec mapper输出 企业多使用LZO或Snappy编解码器在此阶段压缩数据
mapreduce.output.fileoutputformat.compress(在mapred-site.xml中配置) false reducer输出 这个参数设为true启用压缩
mapreduce.output.fileoutputformat.compress.codec(在mapred-site.xml中配置) org.apache.hadoop.io.compress.DefaultCodec reducer输出 使用标准工具或者编解码器,如gzip和bzip2

4.5 压缩实操案例

4.5.1 Map输出端采用压缩

Hadoop源码支持的压缩格式有:BZip2Codec、DefaultCodec

public class WordCountDriver {

	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

		Configuration conf = new Configuration();

		// 开启map端输出压缩
		conf.setBoolean("mapreduce.map.output.compress", true);

		// 设置map端输出压缩方式
		conf.setClass("mapreduce.map.output.compress.codec", BZip2Codec.class,CompressionCodec.class);

		Job job = Job.getInstance(conf);

		job.setJarByClass(WordCountDriver.class);

		job.setMapperClass(WordCountMapper.class);
		job.setReducerClass(WordCountReducer.class);

		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(IntWritable.class);

		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(IntWritable.class);

		FileInputFormat.setInputPaths(job, new Path(args[0]));
		FileOutputFormat.setOutputPath(job, new Path(args[1]));

		boolean result = job.waitForCompletion(true);

		System.exit(result ? 0 : 1);
	}
}

4.5.2 Reduce输出端采用压缩

// 设置reduce端输出压缩开启
		FileOutputFormat.setCompressOutput(job, true);

		// 设置压缩的方式
	    FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class); 

你可能感兴趣的:(hadoop,mapreduce,hadoop,big,data)